Five Guys and a Girl • Code Inspection and Component Test

CubCenter Code Inspection &

Component Test for the

CubMission Module
CubCenter’s Homework Submission and Grading Component

Five Guys and a Girl (5G1G)

	Team Leader:
	Derek Lo <dkl29>

	Lead Architect:
	Liz Gorinsky <elg23>

	Coders:
	Albert Kim <ayk11>

	
	Kyung Kim <kjk31>

	Architects:
	Steve Ling <sl826>

	
	Noel Vega <nv65>

	Integration Architect:
	Kyung Kim <kjk31>

	
	

	Integration Manger:
	James Lee <jl1341>

	Assigned TA:
	Shen Li

 Version Control

	Date
	Version
	Comments
	Author/Editor

	5/4/01
	1.0
	2.1
	Derek Lo

	6/4/01
	1.1
	2.2-2.4
	Albert Kim

	6/4/01
	1.2
	3.1
	Derek Lo

	6/4/01
	1.3
	3.1, 3.2
	Steven Ling, Derek Lo, Albert Kim, Kyung Kim

	6/4/01
	1.4
	1, 4
	Derek Lo

	18/4/01
	1.5
	4
	Derek Lo

	
	
	
	

Introduction

1.1 Changes

· Keeping the user entity module and database module from the CADD, the interface and remote communication modules have been reorganized into Student, TA, and Professor modules that combine the interface and communications functionality pertinent to each type of user entity.

1.2 Inspection

· The inspection process essentially consisted of proofreading of code (possible because the HTML and ColdFusion code was not extremely long), detection of known deficiencies (such as file transfer links that have not been verified), and identification of possible issues (security, invalid user logins handling).

· Verification of the code was simplified by loading the pages in an HTML browser, and checking for quality of layout and also functionality of the actions.

· The HTML format was done in frames, which is a conventional manner of separating interface menus with dynamically generated information. Frames were chosen over other possibilities such as nested tables because of the ease of navigation and their more modular separation concept.

· The component quality upon inspection appeared adequate, but raw. The interface is plain, and has yet to be fully integrated with the graphical HTML design intended for the component. File transfer locations and mail server locations have to be verified before those modules will have functionality.

1.3 Testing

· Our black box testing was performed with equivalence partitions attempting to cover reasonable boundaries of user input. While boundary analysis calls for the farthest extremes of input, some inputs did not pertain because they would be handled by the browser, a separate piece of software that falls outside the scope of the component, or even the integrated system we are developing.

· White box testing involved dividing the code into functional branches, and testing the identified functions or ColdFusion actions.

· The clickable actions (grade entry, grade checking) seemed to be the most stable and successful of the component.

· As explained further in the sections hereafter, the file transfer parts of the component were the most troublesome, and must be corrected before the component demo.

1.4 Overview

2.1.1 Login module
· This module is the User Entity module referred to in the CADD.

· It provides a user entity (identified through a unique key number in the system database) to the other modules.

· Login can either be accomplished by a standalone login form, or provided as a parameter or function call from the context module.

· Users select a course, and are sent to either the student, TA, or professor module depending on their status in that course.

2.1.2 Student module
· The student module did not appear in the CADD, but is in effect a reorganization of the existing interface and communication modules in the CADD.

· Following the selection of a course, if a user is listed as a student in the course, the Student module will be called.

· Student module contains the interface and communications elements that pertain to a student user.

2.1.3 TA module
· The TA module did not appear in the CADD, but is in effect a reorganization of the existing interface and communication modules in the CADD.

· Following the selection of a course, if a user is listed as a TA in the course, the TA module will be called.

· TA module contains the interface and communications elements that pertain to a TA user.

2.1.4 Professor module
· The professor module did not appear in the CADD, but is in effect a reorganization of the existing interface and communication modules in the CADD.

· Following the selection of a course, if a user is listed as a professor in the course, the professor module will be called.

· Professor module contains the interface and communications elements that pertain to a professor user.

2.1.5 Database module
· This is the database module from the CADD.

· It stores all pertinent information in a relational database of SQL tables.

· The database module encompasses all information used by the Student, TA, and Professor modules.

· Keyed by an automatically generated user number internal to the database. (Note: this is not necessarily identical to the context module key.)

2.2 Commenting and Coding Conventions

2.2.1 Login Module

· User Id stored as a session variable from a posted input text

2.2.2
Student Module

· Queries labeled according to main data retrieved

· Cold Fusion code’s actions specified in comments

· Passing of variable using first letter lowercase with the rest of the word matching the table entry name

· Arranged according to different user options (html links)

· Passing of form names using lowercase first letter or specific names

2.2.3
TA Module

· Queries labeled according to main data retrieved (up to a certain point)

· Cold Fusion code’s actions specified in comments

· Passing of variable using first letter lowercase with the rest of the word matching the table entry name

· Arranged according to different user options (html links)

2.2.4 Professor Module

· Queries labeled according to main data retrieved (up to a certain point)

· Cold Fusion code’s actions specified in comments

· Passing of variable using first letter lowercase with the rest of the word matching the table entry name

· Arranged according to different user options (html links)

· Passing of form names using lowercase first letter or specific names

· Temporary JavaScript variables used for specific functions

2.2.5 Database Module

· Named based on relationships (many to many, one to many, one to one)

· Student

· Class

· Homework

· StudentClass

· StudentHomework

· Files (associated to StudentHomework)

· Each table has own unique key

2.3
Error Handling

2.3.1 Login Module

· User id text checked for blank

· If user doesn’t not exist, page is blank (should be handled by context)

2.3.2 Student Module

· Link specific to class selected

· Text input boxes checked for text

2.3.3 TA Module

· Link specific to class selected

· Text input for comments set as default value as “none”

2.3.4 Professor Module

· Link specific to class selected

· Inputs made required for adding homework assignments

· Format of time and date specified (should be able to handle different formats)

2.3.5 Database Module

· Time stamps set to be created on insert of homework upload

· Default values set where necessary

· Null values used where necessary

· Tables linked according to shared data to check for concurrent updates

2.4
Defects

2.4.1
Homework Download

· Completeness problem: A script needs to be run on the server side to handle an way of zipping recursive directories

· Homeworks were to be downloaded with all homework files grouped together according to naming directories convention—userID_versionnumber—per assignment

· CFX_ZIP was attempted to be used; however, problems arose in recursing directories, which is a very necessary part

· CFEXECUTE was tried in order to run a tar.exe command on the server side; however, we not able to get that to function

· CFFILE does not provide an action to handle this problem

· Fixes

· Other attempts to handle this necessity are currently being pursued

2.4.2 Correcting Mistakes in Homework Creation

· User friendly problem: If an error is inputted when creating a homework, that error is difficult to correct

· User friendly problem: Extending a deadline is not accounted for in the current design

· User friendly problem: Handling late assignments is not accounted for in the current design

· Fixes

· Add a field in the Homework tables for a submission period rather than a set date

· Allow homeworks created to be edited by an user such as administrator

· Create an option for professors to edit homework info

2.4.3 Multiple users

· Potential problem: Since session variable are used for permissions and classID’s, multiple windows will not be accommodated

· Fixes:

· Having the context module check and only allow user to log onto one session at a time

2.4.4 Security Problems

· Completeness problem: Not allow users to retrieve sensitive data from database

· Fixes:

· Make sure URL passed variables do not allow data to be shown

· Place code checking permission status for the class and page for each web page

3.1 Black Box Testing

3.1.1 Test Suite

· There are two major partitions of user input in the module – mouse clicks, and alphanumeric keyboard output (into <form> text fields).
· Mouse clicks are only active on hypertext links, which will only generate errors if the link itself is in error. Therefore a mouse click itself cannot generate an error, and is not a testable input.
· Links should all be tested by black box, and then examined in white box inspection.
· User input in text fields can only take the form of alphanumeric entry. Other inputs will automatically be filtered by the browser and have no bearing on the component itself.
· Text input will take the form of:
· No text input
· All numbers (eg. 382847)
· All lowercase letters (eg. hiseke)
· All uppercase letters (eg. AHSDDIJ)
· Other ASCII symbols (eg. #$$@!&)
· Some combination of upper and lower case letters (eg. jidfDHS)
· Some combination of lowercase and numbers (eg. dkl34)
· Some combination of uppercase and numbers (eg. DKL34)
· Some combination of all symbols (eg. DjiE$#32)
· Text fields exist in Login, Student, TA, and Professor modules in the login screen, and uploads section.
· The database module is not accessible to the user directly, and it suffices to black box the other four modules to effectively black box test the database.
3.1.2 Test Results

3.1.2.1 Login Module results
· Null input returns a popup javascript error and stays on the login screen. This is a browser default error, and we cannot change it as long as we are using the <form> tag.
· All other inputs send the user on to the next screen (the course screen). DEFECT: the module should scan for invalid users number and notify the user that an invalid number was detected. Unsure whether this is necessary upon integration with the context module.
· Course selection screen has only clickable input. No errors in this screen itself.
	Input Description
	Expected Result
	Case
	Test Result

	Null input
	Input not accepted.
	User enters null input in login screen
	Expected result, in form of javascript error message.

	Invalid (but not null) alphanumeric input
	Input not accepted. User informed of incorrect input and expected proper input
	Invalid UNI entered: Hei342K
	No error message. Continues to course selection screen with invalid name, but no courses appear.

	Invalid (but not null) ASCII input
	Input not accepted. User informed of incorrect input and expected proper input
	Invalid UNI entered: HekK$#2352!
	No error message. Continues to course selection screen with invalid name, but no courses appear.

	Valid uppercase input
	Input should be accepted. Course listings should be shown for the given UNI.
	Valid ID’s entered: AYK11, DKL29, SL697, KAISER
	Expected Result

	Valid lowercase input
	Input should be accepted. Course listings should be shown for the given UNI.
	Valid IDs entered: ayk11, dkl29, sl697, kaiser
	Expected Result

	Click links on course selection screen
	Links should lead to appropriate courses and interfaces
	Clicked on:
W3139-Spring 01 - Data Structures (student/ta/professor)

	Expected Result

3.1.2.2 Student Module results
· Grade check is all clickable and tested without errors.

· Homework submission brings up clickable list of homeworks without errors

· Clicking on some homeworks gives expected result (single form textfield requesting number of files to be uploaded)

	Input Description
	Expected Result
	Case
	Test Result

	Click on links in the main interface screen
	Clicking the link for the course should take the user to another screen where the user will be given more options
	If user clicks on grade check link
	Expected Result

	
	
	If user clicks on homework upload link
	

	Grade check screen
	Students should see homework grades listed
	No input needed
	Expected Result

	
	Clicking on an assignment brings up comments
	If user clicks on assignment link
	Expected Result

	Homework upload screen
	Clicking on an assignment should give a file upload screen
	If user clicks on homework assignment
	Some links give expected result. Some give abnormal results (more than one text field appears) and some give no result or error (Netscape has “no parameter” error)

	File Upload form – number of files query. Enters integer in form
	For X, X is an element of the positive integer set, there should be X file upload forms on next screen.
	Entered: 3
	Expected Result

	File Upload form – number of files query. Enters non-null non-integer input in form
	ColdFusion error expected, should inform user of proper input procedure.
	Entered: H4e
	ColdFusion error is received, but no information for user on correct input required.

	File Upload form – number of files query. Enters null input
	Error message expected
	User hits submit button
	Javascript popup error

	File Upload form – browse files query. Click on browse.
	Brings up file browse dialog window. Submit accepted.
	Click on browse button. Find file, click on submit button.
	Expected Result

	File Upload form – browse files query. Enter valid filename.
	Submit accepted.
	Enter filename. Click on submit button.
	Expected result.

	File Upload form – browse files query. Enter invalid filename.
	Submit not accepted. User warned that file does not exist.
	Enter invalid filename. Click on submit button.
	System gives file accepted message and timestamp. User does not know that file was actually invalid.

3.1.2.3 TA Module results

	Input Description
	Expected Result
	Case
	Test Result

	In the TA module, the user only has the option to click on a link that pertains to the course the user is currently taking.
	Clicking the link for the course should take the user to another screen where the user will be given more options
	If user clicks on appropriate link

	Expected Result

	
	
	If user does not click on appropriate link
	Expected Result

	TA has the option to either enter grades or get homework for the previously selected course by clicking the appropriate link.
	Expected results are that the enter grades link should direct the TA to a page where the appropriate assignment will be selected and the get homework link should direct the TA to a page which confirms the grades entered.
	If user clicks on enter grades link
	Expected Result

	
	
	If user clicks on get homework link
	Expected Result

	At the enter grades page, TA has the choice to select an assignment which to enter the grade for.
	Clicking on an assignment should direct the TA to a form which will allow the TA to enter more information
	If user clicks on homework assignment
	Expected Result

	
	
	If user does not click on assignment
	Expected Result

	After TA has selected an assignment to be graded, TA must specify the minimum required information in order to properly submit a grade. Invalid response includes entering a nonnumeric grade, entering comments that exceed 250 characters, or failing to enter a grade if a student has been selected
	If the TA does not properly fill out the grade form then the TA should not be allowed to submit the grade and the form should be reset. If the form is properly filled out then the TA should be directed to a page where the TA is notified that the grade is successfully submitted.
	If user tries to submit but has not selected the student (ie null input)
	Expected Result

	
	
	If user selects student but fails to enter a numeric grade or fails to enter 0 to 250 characters for the comments
	Process is halted and does not continue.

	
	
	If user correctly enters student, numeric grade, and less than 250 characters of comments
	Expected Result

	After an acceptable grade has been entered, the TA has the option to enter another grade by clicking link.
	Clicking on the link to enter another grade should redirect the TA back to the page
	If user clicks on link to enter another grade
	Expected Result

	
	
	If user does not click on link
	Expected Result

	At the get homeworks page, TA has the choice to select an assignment for which to retrieve files for.
	Clicking on an assignment should direct the TA to a page which should allow the TA to download the homeworks to the TA’s computer
	If user clicks on an assignment

	Process if halted and does not continue

	
	
	If user does not click on an assignment
	Expected Result

3.1.2.4 Professor Module results

A) Grading Completion – Email Form

On both valid and invalid inputs, the error messaged indicated that a SMTP server had not been specified in the <CFMAIL> tag. This will be corrected before the demo.

B) Post Assignments

On valid inputs, the error message indicates that the directory cannot be created, although the assignment gets added to the database. On invalid inputs, the error is that the user did not enter the input in the proper format. This will be corrected before the demo.

C) Formula for Final Grades

Valid inputs: the formula is successfully entered into the database.

Invalid inputs: the error message indicates that either 1 input is out of range or that the sum of the inputs != 100.

3.2 White Box Testing

3.2.1 Whitebox Testing for Student Module

3.2.1.1
First Branch

Selection of homeworks for each student – retrieved through sql query

<CFTABLE Query="homework" COLHEADERS HTMLTABLE>

<CFCOL HEADER="Assignment" TEXT="#HomeworkNumber#" width=17>

<CFCOL HEADER="Description" TEXT=" #HomeworkDescription#" width=40>

<CFCOL HEADER="Due" TEXT="#HomeworkDue#" width=20 align="center">

<CFCOL HEADER="Out of" TEXT="#HomeworkWorth#" width=10 align=”right">

</cftable>
This branch lets the user select which homework to view. No problems encountered.

3.2.1.2
Second Branch

List of homeworks for each class – displays grades for each homework done graded

<CFTABLE Query="homework" COLHEADERS HTMLTABLE>

<CFCOL HEADER="Assignment" TEXT="#HomeworkNumber#" width=17>

<CFCOL HEADER="Description" TEXT="#HomeworkDescription#" width=40>

<CFCOL HEADER="Due" TEXT="#HomeworkDue#" width=20 align="center">

<CFCOL HEADER="Out of" TEXT="#HomeworkWorth#" width=10 align="right">

</cftable>
This branch takes the user to the page where a number is shown representing the grade for all of the assignments. No problems encountered.

3.2.1.3
Third Branch

Comments for each homework selected

<cfoutput query="comments">

<h3>[Comments]</h3>

<h5>#VARIABLE.type# #HomeworkNumber#-#HomeworkDescription#</h5>

#Comments#

</cfoutput>

An assignment is clicked on, and any comments written by the TA about that particular homework is shown. No problems encountered.

3.2.1.4
Fourth Branch

Homework upload – a form asking for the number of files to upload

<cfoutput query="id">

<form action="upload_form.cfm?className=#className#&homeworkNumber=#homeworkNumber#" method="post">

How many files would you like to upload:

<input type="text" name="numFiles">

<input type="hidden" name="studentHomeworkID" value="#StudentHomeworkID#">

<input type="hidden" name="version" value="#VARIABLE.version#">

<input type="submit" value="Enter">

</form>

</cfoutput>
Valid inputs: an integer > 0.

A valid input takes the user to the page where the files may be uploaded.

An invalid input outputs an error: “cannot convert abc to a number.”

3.2.1.5
Fifth branch

Asks for the files to be selected via a browse function – checks to make sure previous form filled with a value

<cfoutput>

Please browse for your files to upload:

<FORM ACTION="upload_action.cfm?numFiles=#numFiles#&className=#ClassName#&homeworkNumber=#HomeworkNumber#" METHOD="post" ENCTYPE="multipart/form-data">

<input type="hidden" name="studentHomeworkID" value="#StudentHomeworkID#">

<input type="hidden" name="version" value="#version#">

<input type="hidden" name="time" value="#CreateODBCDateTime(Now())#">

 <cfloop from="#start#" step="#increment#" to="#end#" index="counter">

File #counter#:

<INPUT TYPE="File" NAME="File#counter#">

</cfloop>

<hr>

<INPUT TYPE="Submit" value="Submit">
</FORM>

</cfoutput>
The user may browse the client hard drive to select files to be uploaded to the server. The path/file is written into the field, and the user may click to submit.

3.2.1.6
Sixth Branch

Database uploaded with necessary information

<cfquery name="insert_files" datasource="foobar" dbtype="ODBC">

INSERT INTO Files(FileLocation, VersionNum, StudentHomeworkID)

VALUES('C:\Inetpub\wwwroot\student\#className#\#homeworkNumber#\#SESSION.userID#_#version#\', #version#, #studentHomeworkID#);

</cfquery>
The database is updated when the user submits the assignment.

3.2.1.7
Seventh Branch

Files uploaded in a loop

<CFFILE ACTION="UPLOAD"

DESTINATION="C:\Inetpub\wwwroot\student\#className#\#homeworkNumber#\#SESSION.userID#_#version#\"

FILEFIELD="File#counter#"

NAMECONFLICT="OVERWRITE">
The output:

The file has been successfully uploaded.
Time Uploaded: {ts '2001-04-07 17:28:38'}

The file has been successfully uploaded.
Time Uploaded: {ts '2001-04-07 17:28:38'}

…is shown when the student successfully uploads the assignment. (2 files in this case).

An invalid input would be an incorrect path/file. The script ignores such inputs; this will be fixed before the demo.

3.2.2 Whitebox Testing for TA Module

Testing Suite

3.2.2.1 First Branch

<h1>CUBmission</h1>

<h3>Welcome #SESSION.userID#!</h3>

</cfoutput>

<h4>Please select a course:</h4>

<CFTABLE Query="class">

<CFCOL HEADER="Classes" TEXT="#ClassName#-#ClassDescription# (#Permissions#)" width="60">

</cftable>

This code represents the first branch, where the TA chooses which class to administer over.

3.2.2.2 Second Branch

<h3>[Menu]</h3>

[Enter Grades]

[Get Homeworks]

This code represents the second branch, in which the teaching assistant chooses in what

way to administer the course chosen. The TA is given the choice to either enter grades or

get homeworks.

3.2.2.2.1 Enter Grades

<h3>[Enter Grades]</h3>

 <cfoutput query="homework">

 <h4>Homework #HomeworkNumber# - #HomeworkDescription#</h4>

 </cfoutput>

 <form action="edit_grades.cfm" method="post">

 <cfoutput query="homework">

 <input type="hidden" Name="homeworkID" value="#homeworkID#">

 <input type="hidden" Name="numberGraded" value="#NumberGraded#">

 </cfoutput>

 Student:

 <SELECT name="studentID">

 <cfoutput query="class">

 <option value="#StudentID#">#CUID# - #FirstName# #LastName#

 </cfoutput>

 </select>

 <cfoutput query="homework">

 Grade: <input type="text" Name="grade" maxlength="5" size="8">

 /#homeworkWorth#

 </cfoutput>

 <p>

 Please enter comments below:[Max: 250 characters]

 <textarea name="comments" Rows="6" Cols="40"></textarea>

 <p>

 <input type="submit" value="Enter Grades">

The results should come out like this:

[Enter Grades]

Student:

[image: image1.wmf]

#CUID# - #FirstName# #LastName#

Grade: [image: image2.wmf]

/#homeworkWorth#

Please enter comments below:[Max: 250 characters]

[image: image3.wmf]

[image: image4.wmf]Enter Grade

s

Bottom of Form

This code allows the TA to enter grades for a particular assignment to a specified student.

The expected result is that after the TA completes the form correctly, the TA should be taken

to a page which confirms the successfully entered grade.

3.2.2.2.4 Get Homeworks

<h3>[Select Assignment]</h3>

<CFTABLE Query="homework" COLHEADERS HTMLTABLE>

<CFCOL HEADER="Assignment" TEXT="#HomeworkNumber#" width=20>

<CFCOL HEADER="Description" TEXT="#Home

workDescription#" width=40>
Allows the TA to download the homework which the student has submitted.

The expected result is that the TA should be able to retrieve files that the student has submitted.

3.2.2
Testing Results

The results for both the whitebox and blackbox were the same. The branches all worked as expected except the branch that involved the downloading of the homeworks under the get homeworks branch. The file transfer sequences were discussed as a potential defect in the code inspection section. The grade form does not submit if the TA does not properly specify the student and enter a numerical grade.

3.2.3
Testing Suite

3.2.3.1 First Branch

<h1>CUBmission</h1>

<h3>Welcome #SESSION.userID#!</h3>

</cfoutput>

<h4>Please select a course:</h4>

<CFTABLE Query="class">

<CFCOL HEADER="Classes" TEXT="#ClassName#-#ClassDescription# (#Permissions#)" width="60">

</cftable>

This code represents the first branch, where the professor chooses which class to administer over.

3.2.3.2 Second Branch

<h3>[Menu]</h3>

[Edit Grades]

[Grading Completion]

[Formula For Final Grades]

[Get Homeworks]

[Post Assignments]
This code represents the second branch, in which the professor chooses in what way to administer the course chosen.

3.2.3.2.1 Edit Grades

<h3>[Select Assignment]</h3>

<CFTABLE Query="homework" COLHEADERS HTMLTABLE>

<CFCOL HEADER="Assignment" TEXT="#HomeworkNumber#" width=17>

<CFCOL HEADER="Description" TEXT="#HomeworkDescription#" width=40>

<CFCOL HEADER="Due" TEXT="#HomeworkDue#" width=20 align="center">

<CFCOL HEADER="Out of" TEXT="#HomeworkWorth#" width=10 align="right">

</cftable>

This code gives a choice of which assignments to grade.

3.2.3.2.2 Grading Completion

<h3>[Grading Completion]</h3>

<CFTABLE Query="graded_homeworks" COLHEADERS HTMLTABLE>

<CFCOL HEADER="Assignment" TEXT="#HomeworkNumber#" width=17>

<CFCOL HEADER="Description" TEXT="#HomeworkDescription#" width=40>

<CFCOL HEADER="Done Graded" TEXT="#NumberGraded#" width=10 align="center">

<CFCOL HEADER="Total Students" TEXT="#Size#" width=10 align="right">

</cftable>

<h5>[Click Description to Send Email to Students Notifying Grades Posted]</h5>

This code give a choice of which assignment to send an email notification about when it has been graded.

3.2.c.2.3 Formula For Final Grades

<h3>[Retrieving Grades]</h3>

<script language="JavaScript">

document.write("<h5>Formula: Homeworks= "+formula_homework+"%, Midterms= "+formula_midterm+"%, Finals= "+formula_final+"%</h5>");

</script>

<table width=100% cellspacing="0" cellpadding="2" border="1" frame="box">

<cfoutput>

<tr>

<td width=12%>CUNIX </td>

<td width=12%>First Name </td>

<td width=12%>Last Name </td>

<td width=12%>Homework
 (out of #VARIABLE.homework#) </td>

<td width=12%>Midterm
 (out of #VARIABLE.midterm#) </td>

<td width=12%>Final
 (out of #VARIABLE.finals#) </td>

<td width=12%>Final Grade </td>

</tr>

</cfoutput>

<cfoutput query="list">

<tr>

<td>#CUID#</td>

<td>#FirstName#</td>

<td>#LastName#</td>

<td>

<script language="javascript">

document.write(homeworks[#StudentID#]);

</script>

</td>

<td>

<script language="javascript">

document.write(midterms[#StudentID#]);

</script>

</td>

<td>

<script language="javascript">

document.write(finals[#StudentID#]);

</script>

</td>

<td>

<script language="javascript">

document.write(totals[#StudentID#]);

</script>

</td>

</tr>

</cfoutput>

</table>

This outputs the results of the formula, taking into consideration which exams/homeworks a particular student has already completed. The grade for that student is shown.

3.2.c.2.4 Post Assignments

<cfform action="add_homeworks.cfm" method="post">

<table>

<tr>

<td>Select Type</td>

<td>:</td>

<td><SELECT Name="type">

<option value="0">Homework

<option value="1">Extra Credit

<option value="2">Midterm

<option value="3">Final

</select>

</td>

</tr>

<tr>

<td>Homework Number</td>

<td>:</td>

<td><cfinput type="text" name="homeworkNumber" required="yes"></td>

</tr>

<tr>

<td>Homework Description</td>

<td>:</td>

<td><cfinput type="text" name="homeworkDescription" required="yes"></td>

</tr>

<tr>

<td>Homework Due Date</td>

<td>:</td>

<td><cfinput type="text" name="month" validate="integer" required="yes" size="2" maxlength="2">/<cfinput type="text" name="day" validate="integer" required="yes" size="2" maxlength="2">/<cfinput type="text" name="year" validate="integer" required="yes" size="4" maxlength="4"></td>

<td>(mm/dd/yyyy)</td>

</tr>

<tr>

<td>Homework Due Time</td>

<td>:</td>

<td><cfinput type="text" name="hour" validate="integer" required="yes" size="2" maxlength="2">:<cfinput type="text" name="minute" validate="integer" required="yes" size="2" maxlength="2">:<cfinput type="text" name="second" validate="integer" required="yes" size="2" maxlength="2"></td>

<td>(hh:mm:ss)</td>

</tr>

<tr>

<td>Homework Worth</td>

<td>:</td>

<td><cfinput type="text" name="homeworkWorth" required="yes"></td>

</tr>

</table>

<input type="submit" value="submit">

</cfform>
Allows the instructor to input the data required to post a new assignment.

The expected input is as follows

[Post Assignment]

Top of Form

	Select Type
	:
	[image: image5.wmf]

Homework

	Homework Number
	:
	[image: image6.wmf]

	Homework Description
	:
	[image: image7.wmf]

	Homework Due Date
	:
	[image: image8.wmf]

/[image: image9.wmf]

/[image: image10.wmf]

	(mm/dd/yyyy)

	Homework Due Time
	:
	[image: image11.wmf]

:[image: image12.wmf]

:[image: image13.wmf]

	(hh:mm:ss)

	Homework Worth
	:
	[image: image14.wmf]

	

[image: image15.wmf]s

ubmit

The expected output confirms that the assignment has been posted on any valid input.On an invalid input, the output lets the user know what the problem is.

3.2.3
Testing Results

The whitebox results came out identical to the blackbox results (Refer to 3.1.2.c) for any statement based inputs. The branches all worked as expected except the Grading Completion branches, in which the error is a 404 not found error. This is due to the script being unable to find the directory to create (as explained in 3.1.4(B).)

4 Integration Testing

· The modules of Cubmission homework component are divided by user cases (Student, TA, Professor).
· There is little interaction between the different user modules once a class has been chosen.
· There were difficulties during integration testing with navigation between user modules, because of an ineffective ‘back’ link.
· Aside from navigation between modules, the various integrated functions were tested and found to work together. These were mostly relations between separate module functions, such as:
· Student upload homeworks (TA get homeworks
· TA/professor post assignments (Student submit to assignments
· TA enter grades (Student get grades
Professor edit grades (Student get grades

· References and Glossary

PAGE
Page 2 of 22

_1049086134.unknown

_1049086137.unknown

_1049086138.unknown

_1049086135.unknown

_1049086130.unknown

_1049086132.unknown

_1049086133.unknown

_1049086131.unknown

_1049086128.unknown

_1049086129.unknown

_1049086125.unknown

_1049086126.unknown

_1049086123.unknown

_1049086124.unknown

_1049086122.unknown

