March 23, 2001
Mothership — ISID
3
Version 1.0

Initial System Interfaces

Mothership

Version 1.0

(Context Module)

	The Brain Trust
ザ ブレイン トラスト

	Akira Tsukamoto (Team Leader)
塚本　明
	at541@columbia.edu

	Steven Osman (Integration Manager)

スティブン オスマン　　
	sto8@columbia.edu

	Catherine (Weilun) Chang
キャサリン チャン
	wc363@columbia.edu

	Aner Fust
アネー ファスト
	af590@columbia.edu

	
	

	TA:
	Shen Li

	Integration TA:
	James Lee

Table of Contents

21.
Introduction

21.1.
Changes since Previous ISI

21.1.1.
Component Directories

21.1.2.
Calling Convention

21.1.3.
Context Data Query Changes

21.2.
Invoking the Login Interface

32.
Export API and Schemas

42.1.
System Context Diagram - Exported Interface(s):

52.2.
Exported Interfaces

52.2.1.
Login Interface (MSL_*)

62.2.2.
Context Data Query Interface (MSCQ_*)

112.2.3.
Audit Log Insertion Interface (MSALI_*)

123.
Import API and Schemas

134.
Reference and Glossary

145.
Appendices

145.1.
Appendix 1

155.2.
Appendix 2

1. Introduction

The Mothership system is the context module of CubCenter. The system will provide numerous services to the other components essential to their functionality. The services offered to other modules include mechanisms to get login information, to query context information, such as lists of students and classes, and to insert entries into CubCenter’s audit log.

The Mothership does not expect to import any services from the other components.

1.1. Changes since Previous ISI

The services offered by the Mothership system have not changed since the previous ISI. The majority of the changes apply to the naming conventions, and, in some instances, the format of the data returned by Mothership.

1.1.1. Component Directories

The Mothership system, when installed, will contain a number of subdirectories. The API calls into the system will be under one of the various directories, specifically, the entry point to each API will be:

	Interface
	Entry Point

	Login
	<MothershipPath>/Login/index.cfm

	Context Data Query
	<MothershipPath>/ContextDatabase/index.cfm

	Audit Log Insertion
	<MothershipPath>/AuditLog/index.cfm

1.1.2. Calling Convention

The calling convention has changed slightly. Please refer to the example in section 5.2. For example, to invoke the context data query API, Now, rather than calling <CFModule template=”mothership/ContextDatabase/MSCQ_*”>, the appropriate call is <CFModule template=”mothership/ContextDatabase/index.cfm” fuseaction=”MSCQ_*”>

1.1.3. Context Data Query Changes

The format of the data returned by the Context Data Query Interface (the MSCQ_* functions) has been changed for ease of development. Please refer to the appropriate section for the new specifications.

1.2. Invoking the Login Interface

We recommend that you invoke the MSL_GetLogin interface function either at the top of your index.cfm or in your app_globals.cfm file. This will ensure that a user is properly logged into CubCenter before any futher execution of your module. The only time a different approach may be considered is if the entry point URL passed into MSL_GetLogin changes based on the user’s context (i.e. either by a specific entry point selected by the user).

2. Export API and Schemas

	Login Interface

	Description: This interface is used to access the user ID of the currently logged in user, or to request that that user be logged out. If no user is logged in, this interface will invoke a login screen. This interface also allows a caller to determine if a user is logged into the system.

	Context Data Query Interface

	Description: This interface provides read-only access to the context information stored in the system. The diagram in Appendix 1 illustrates the relationship between the various type of information. The interface allows you to generate lists of items, or retrieve details of a particular item.

	Audit Log Insertion Interface

	Description: This interface is used to add events to CubCenter’s event/audit log, which is managed by the Mothership System.

2.1. System Context Diagram - Exported Interface(s):

[image: image1.wmf]Virtual TA

Room

Homework/

Grading

Bulletin Board

Calender

Login Module

Login Interface

Audit Log Module

Audit Log Insertion

Interface

Context Data

Module

Context Data Query

Interface

Mothership

Modules

Mothership

Interfaces

External Components

Data Flow

Control Flow

Login/Logout

Context Data

Events

Login/Logout

Login/Logout

Login/Logout

Events

Events

Events

Context Data

Context Data

Context Data

2.2. Exported Interfaces

Refer to Appendix 2 for an example of how to invoke one of these functions.

2.2.1. Login Interface (MSL_*)

	MSL_GetLogin

	Prototype
	MSL_GetLogin(<ReturnURL> <ModuleName>)

	Description
	This function is used to get the user ID of the currently logged in user. If nobody is logged in, or the login has expired, then this function will display a login screen and never return. When the user successfully logs in, he will be directed to <ReturnURL>.

	Input Parameters
	· <ReturnURL> is a string; the URL to redirect a newly logged in user. If a user is currently logged in, this parameter is not used.

· <ModuleName> is a string; the name of the module making the request. This will assist the Mothership

	Output Variables
	· MSL_PersonID is an integer; the number that uniquely identifies the logged in user to the system.

	MSL_Logout

	Prototype
	MSL_Logout()

	Description
	This function logs the current user out of the system. If no user is logged in, or the login has expired, then this function does nothing.

	Input Parameters
	(none)

	Output Variables
	(none)

	MSL_GetUserLoginStatus

	Prototype
	 MSL_GetUserLoginStatus(<PersonID>)

	Description
	This function is used to determine whether a user is currently using the system, and, if so, what module the person has used most recently.

	Input Parameters
	· <PersonID> is an integer; a number that uniquely identifies the user to the system

	Output Variables
	· MSL_LoggedIn is an integer; 0 indicates the user is not logged in, any other number indicates that the user is logged in
· MSL_Module is a string; the name of the module that the person accessed last

2.2.2. Context Data Query Interface (MSCQ_*)

	MSCQ_GetClassListByPerson

	Prototype
	 MSCQ_GetClassListByPerson (<CUID> | <CunixID> | <LoginName> | <PersonID>)

	Description
	This function is used to list the classes associated with a person and the role the person plays in each of the classes; specifically, it provides a list of classes of which someone is a student, an instructor, or a TA.

	Input Parameters
	· <CUID> is a string; the person’s CUID; for example, “111-22-3333”

· <CunixID> is a string; the person’s Cunix ID; for example, “rj29”

· <LoginName> is a string; the person’s login name.

· <PersonID> is an integer; the number that uniquely identifies this user to the system.

	Output Variables
	· MSCQ_Status is an integer; 0 indicates success, any other value indicates failure. If non-zero (i.e. failure), then none of the other output variables should be used.
· MSCQ_ClassRoleList[] is an array of structures, containing:

· .role is a string, one of “ta”, “instructor”, or “student”.

· .class is a structure, containing:
· .ClassID is an integer; a number that uniquely identifies this class to the system.
· .SectionKey is a string; is the section key for the class

· .CourseNumber is a string; the number of the course; for example, “W4701”

· .SectionNumber is an integer; the section of that course

· .Year is an integer; the year the course is being offered

· .Semester is a string; the semester the course is being offered, one of “spring”, “summer”, or “fall”

· .CourseName is a string; the name of the course, e.g. “Artificial Intelligence”

· .Points is an integer; the number of points for the class

· .Department is a string; the department that the class belongs to; for example, “COMS”

	MSCQ_GetPersonListByClass

	Prototype
	 MSCQ_GetPersonListByClass (<ClassID> | <SectionKey>)

	Description
	This function is used to list the people associated with a class and the role each person plays in the class.

	Input Parameters
	· <ClassID> is an integer; a number that uniquely identifies this class to the system.

· <SectionKey> is a string; the section key of the class, as defined by the registrar, such as “20013COMS4701W001”

	Output Variables
	· MSCQ_Status is an integer; 0 indicates success, any other value indicates failure. If non-zero (i.e. failure), then none of the other output variables should be used.
· MSCQ_PersonRoleList[] is an array of structures. Each element contains:

· .role is a string, one of “ta”, “instructor”, or “student”.

· .person is a structure, containing:

· .PersonID is an integer; a number that uniquely identifies this person to the system.
· .FirstName is a string; the person’s first name
· .MiddleName is a string; the person’s middle name
· .LastName is a string; the person’s last name
· .CUID is a string; the person’s CUID
· .CunixID is a string; the person’s Cunix ID
· .LoginName is a string; the person’s login name
· .School is a string; the school the person is enrolled in; for example, “gs”, “seas”, or “cc”
· .Department is a string; the department the person is associated with
· .Email is a string; the person’s email address
· .PhoneNumber is a string; the person’s phone number
· .Address1 is a string; the first line of the person’s street address
· .Address2 is a string; the second line of the person’s street address
· .Address3 is a string; the third line of the person’s street address
· .City is a string; the city of the person’s address
· .State is a string; the state or province of the person’s address
· .ZIP is a string; the zip or postal code of the person’s address
· .Country is a string; the country of the person’s address

	MSCQ_GetPersonDetails

	Prototype
	 MSCQ_GetPersonDetails (<CUID> | <CunixID> | <LoginName> | <PersonID>)

	Description
	This function is used to get details about a specific person.

	Input Parameters
	· <CUID> is a string; the person’s CUID; for example, “111-22-3333”

· <CunixID> is a string; the person’s Cunix ID; for example, “rj29”

· <LoginName> is a string; the person’s login name.

· <PersonID> is an integer; the number that uniquely identifies this user to the system.

	Output Variables
	· MSCQ_Status is an integer; 0 indicates success, any other value indicates failure. If non-zero (i.e. failure), then none of the other output variables should be used.
· MSCQ_Person is a structure, containing:
· .PersonID is an integer; a number that uniquely identifies this person to the system.
· .FirstName is a string; the person’s first name
· .MiddleName is a string; the person’s middle name
· .LastName is a string; the person’s last name
· .CUID is a string; the person’s CUID
· .CunixID is a string; the person’s Cunix ID
· .LoginName is a string; the person’s login name
· .School is a string; the school the person is enrolled in; for example, “gs”, “seas”, or “cc”
· .Department is a string; the department the person is associated with
· .Email is a string; the person’s email address
· .PhoneNumber is a string; the person’s phone number
· .Address1 is a string; the first line of the person’s street address
· .Address2 is a string; the second line of the person’s street address
· .Address3 is a string; the third line of the person’s street address
· .City is a string; the city of the person’s address
· .State is a string; the state or province of the person’s address
· .ZIP is a string; the zip or postal code of the person’s address
· .Country is a string; the country of the person’s address

	MSCQ_GetClassDetails

	Prototype
	 MSCQ_GetClassDetails(<ClassID> | <SectionKey>)

	Description
	This function is used to get details about a specific class.

	Input Parameters
	· <ClassID> is an integer; a number that uniquely identifies this class to the system

· <SectionKey> is a string; the section key for the class, as defined by the registrar; for example, “20013COMS4701W001”

	Output Variables
	· MSCQ_Status is an integer; 0 indicates success, any other value indicates failure. If non-zero (i.e. failure), then none of the other output variables should be used.
· MSCQ_Class is a structure, containing:
· .ClassID is an integer; a number that uniquely identifies this class to the system.
· .SectionKey is a string; is the section key for the class

· .CourseNumber is a string; the number of the course; for example, “W4701”

· .SectionNumber is an integer; the section of that course

· .Year is an integer; the year the course is being offered

· .Semester is a string; the semester the course is being offered, one of “spring”, “summer”, or “fall”

· .CourseName is a string; the name of the course, e.g. “Artificial Intelligence”

· .Points is an integer; the number of points for the class

· .Department is a string; the department that the class belongs to; for example, “COMS”

	MSCQ_GetClassList

	Prototype
	 MSCQ_GetClassList()

	Description
	This function is used to get details about a specific class.

	Input Parameters
	· <CourseNumber> is a string; the course number to search by, for example “F1121”

· <SectionNumber> is an integer; the section of that course

· <Year> is an integer; the year the class is being held in

· <Semester> is a string; the semester the class is being held in, one of “spring”, “fall” or “summer”

· <Department> is a string; the department the class belongs to; for example, “COMS”

	Output Variables
	· MSCQ_Status is an integer; 0 indicates success, any other value indicates failure. If non-zero (i.e. failure), then none of the other output variables should be used.
· ClassList[] is a one dimensional array of structures, containing:

· .ClassID is an integer; a number that uniquely identifies this class to the system.
· .SectionKey is a string; is the section key for the class

· .CourseNumber is a string; the number of the course; for example, “W4701”

· .SectionNumber is an integer; the section of that course

· .Year is an integer; the year the course is being offered

· .Semester is a string; the semester the course is being offered, one of “spring”, “summer”, or “fall”

· .CourseName is a string; the name of the course, e.g. “Artificial Intelligence”

· .Points is an integer; the number of points for the class

· .Department is a string; the department that the class belongs to; for example, “COMS”

2.2.3. Audit Log Insertion Interface (MSALI_*)

	MSALI_LogEvent

	Prototype
	 MSALI_LogEvent(<Priority> [<PersonID>] <Module> <Activity> <Info>)

	Description
	This function is used to add an entry to the audit log

	Input Parameters
	· <Priority> is an integer; it indicates the severity of the event. The current allowable values are 100, which means “notice” for a trivial event, 200 which means “warning” for a warning, and 300, which means “error” for an error or a critical event (e.g. if the disk becomes full)

· <PersonID> is an integer; the identifier of the user who triggered the event. Please note that this field is not required if the event was not caused by a user.

· <Module> is a string; the name of the module that is reporting the event

· <Activity> is a string; a very short description (<20 characters) of the event; for example “disk failure” if the access to the disk failed, or “insert event” if someone just inserted a calendar event. The values are specific to the module triggering the event.

· <Info> is a string; this contains detail regarding the event. If the event indicates a disk failure, this field could contain details of the activity that was being performed as well as the volume on which the the access failed. If the event indicates an insertion of a an event into a calendar, this might be the ID of the calendar event created.

	Output Variables
	(none)

3. Import API and Schemas

No imported API’s.

4. Reference and Glossary

Cold Fusion 4.5:

http://www.allaire.com/

The following Integration Concept Documents were referred to:

· CubCenter Integration Concept for the CubMission Module (by Five Guys and a Girl)

· OrgO (Organization Online) Integration Concept Document (by The Ginyuu Force)

· T Room: A Java TA Room (by 2YR)

· BlueBoard: Integration Concepts Description (by hotFision)

The following teams were contacted:

· Five Guys and a Girl

· The Ginyuu Force

· 2YR

· hotFision

5. Appendices

5.1. Appendix 1

[image: image2.wmf]Person

PK

PersonID

FirstName

MiddleName

LastName

CUID

CunixID

LoginName

School

Department

Email

PhoneNumber

Address1

Address2

Address3

City

State

ZIP

Country

Class

PK

ClassID

SectionKey

CourseNumber

SectionNumber

Year

Semester

CourseName

Points

Department

Student List

FK

FK

Person ID

Class ID

Instructor List

FK

FK

Person ID

Class ID

TA List

FK

FK

Person ID

Class ID

Note:

This diagram is not an actual representation of how the data is

stored internally

in our system. Rather, it is intended to display a logical rela

tionship between

the different types of data provided by the interfaces defined i

n this document.

5.2. Appendix 2

The following is an example of how to invoke one of these interfaces in ColdFusion. This example assumes that the Mothership System is installed in a directory /cubcenter/mothership on the web server.

For example, if a module wanted to display the name of the user whose Cunix ID is sl697:

<CFModule Template=”/cubcenter/mothership/ContextDatabase/index.cfm” fuseaction=”MSCQ_GetPersonDetails.cfm”

 CunixID=”sl697”>

<CFOutput>

 <CFIf MSCQ_Status IS 0>

 sl697’s full name is #MSCQ_Person.FirstName# #MSCQ_Person.MiddleName#

 #MSCQ_Person.LastName#

 <CFElse>

 Error getting sl697’s full name. Error is #MSCQ_Error#

 </CFIf>

</CFOutput>

10

_1046833883.ppt

Virtual TA

 Room

Homework/

Grading

Bulletin Board

Calender

Login Module

Login Interface

Audit Log Module

Audit Log Insertion

Interface

Context Data Module

Context Data Query

 Interface

Mothership Modules

Mothership Interfaces

External Components

Data Flow

Control Flow

Login/Logout

Context Data

Events

Login/Logout

Login/Logout

Login/Logout

Events

Events

Events

Context Data

Context Data

Context Data

Fgfgfgfdg

_1046834353.ppt

Note:

This diagram is not an actual representation of how the data is stored internally in our system. Rather, it is intended to display a logical relationship between the different types of data provided by the interfaces defined in this document.

			Person

			PK

			PersonID

			

			FirstName

MiddleName

LastName

CUID

CunixID

LoginName

School

Department

Email

PhoneNumber

Address1

Address2

Address3

City

State

ZIP

Country

			Class

			PK

			ClassID

			

			SectionKey

CourseNumber

SectionNumber

Year

Semester

CourseName

Points

Department

			Student List

			FK

FK

			Person ID

Class ID

			Instructor List

			FK

FK

			Person ID

Class ID

			TA List

			FK

FK

			Person ID

Class ID

Instructor List

FK

FK

Person ID

Class ID

TA List

FK

FK

Person ID

Class ID

Class

PK

ClassID

SectionKey

CourseNumber

SectionNumber

Year

Semester

CourseName

Points

Department

Student List

FK

FK

Person ID

Class ID

Person

PK

PersonID

FirstName

MiddleName

LastName

CUID

CunixID

LoginName

School

Department

Email

PhoneNumber

Address1

Address2

Address3

City

State

ZIP

Country

