Mothership — CICT
3
Version 1.0

Code Inspection

and

Code Test

Mothership

Version 1.0

(Context Module)

The Brain Trust
ザ ブレイン トラスト

Akira Tsukamoto (Team Leader)

塚本　明
at541@columbia.edu

Steven Osman (Integration Manager)

スティブン オスマン　　
sto8@columbia.edu

Catherine (Weilun) Chang
キャサリン チャン
wc363@columbia.edu

Aner Fust
アネー ファスト
af590@columbia.edu

TA:
Shen Li

Integration TA:
James Lee

Table of Contents

31.
Introduction

31.1.
Changes

31.2.
Inspection

41.3.
Test

41.3.1.
Testing Process

41.3.2.
Success of Testing Process

52.
Inspection Report

52.1.
Context Database Module

52.1.1.
Overview

52.1.2.
Commenting and Coding Conventions

52.1.3.
Error Handling

52.1.4.
Defects

62.2.
Login Module

62.2.1.
Overview

62.2.2.
Commenting and Coding Conventions

62.2.3.
Error Handling

62.2.4.
Defects

82.3.
Context Data Maintenance Module

82.3.1.
Overview

82.3.2.
Commenting and Coding Conventions

82.3.3.
Error Handling

82.3.4.
Defects

92.4.
Audit Log Module

92.4.1.
Overview

92.4.2.
Commenting and Coding Conventions

103.
Unit Test Report

103.1.
Context Database Module

103.1.1.
Specification-Based Testing

103.1.1.1.
Testing Suite

123.1.1.2.
Test Results

133.1.2.
Program-Based Testing

133.1.2.1.
Testing Suite

203.1.2.2.
Test Results

203.1.2.3.
Defects

213.2.
Login Module

213.2.1.
Specification-Based Testing

213.2.1.1.
Testing Suite

223.2.1.2.
Test Results

233.2.2.
Program-Based Testing

233.2.2.1.
Testing Suite

253.2.2.2.
Test Results

263.3.
Context Data Maintenance UI Module

263.3.1.
Specification-Based Testing

263.3.1.1.
Testing Suite

273.3.1.2.
Test Results

273.3.1.3.
Defects

283.3.2.
Program-Based Testing

283.3.2.1.
Testing Suite

303.3.2.2.
Test Results

303.3.2.3.
Defects

313.4.
Audit Log Interface

313.4.1.
Specification-Based Testing

313.4.1.1.
Testing Suite

313.4.1.2.
Test Results

323.4.2.
Program-Based Testing

323.4.2.1.
Testing Suite

333.4.2.2.
Test Results

344.
Integration Test Report

344.1.
Login module + Context Database Module

344.1.1.
Testing suite

344.1.2.
Results

344.1.3.
Defects

354.2.
Login module + Context Database Module + Context Maintenance UI

354.2.1.
Testing suite

354.2.2.
Results

364.2.3.
Defects

374.3.
Login module + Context Database Module + Context Maintenance UI + Audit Log Interface

374.3.1.
Testing suite

374.3.2.
Results

384.3.3.
Defects

395.
References and Glossary

406.
Appendices

1. Introduction

1.1. Changes

Only one major change has been made since the Component Architecture and Design document, specifically, it was the elimination of the design module DMOD.306 – the Database Abstraction Module. Because the functionality provided by Cold Fusion to manipulate databases is extremely easy to use, it was unnecessary to create an additional module to abstract it any further.

1.2. Inspection

For simplicity lack of time and future maintainability the teams did not define any new conventions and it strictly follows the FuseBox methodology for commenting an other conventions. For example, the file structure and file naming. Since the FuseBox methodology is well documented no further details are given here.

The team inspected the code of all the major modules. The process involved the reading out a loud of the code by the code writer, and, at the same time, teams members inspected the code that was printed and distributed to them. The process began by inspecting the simpler sub modules and gradually moving to the more complex. Over all about 1500 lines of code were inspected.

The process, at first, seemed like a waste of time. We started by inspecting the simple sub modules and we did not find any bugs. However, this gave us the opportunity to concentrate on the FuseBox conventions and allowed us some time to get familiar and comfortable in inspecting someone else’s code.

The best module was the Context Data module. The module adhered very closely to the FuseBox convention. They code was well structured and few bugs were found in it. The large number of code lines as well as the good logic made a robust unit. The code was not commented enough to make for an “easy” reading—that was its only flaw.

The worst module, in terms of coding conventions, is the Login module. The module did not fully follow the FuseBox conventions regarding to file names. Overall, however , all modules were well written and the fairly smooth integration can account for that.

1.3. Test

1.3.1. Testing Process

Unlike the other modules in CubCenter, the primary function of the Mothership System is to provide a set of APIs for the others, rather than to provide a set of visual interfaces through which users will interact on a daily basis (that is not to say, however, that the Mothership System does not offer any visual interfaces, only that they are secondary functions). The primary testing of the APIs was tested from an API-driven test, rather than a user interaction test. However, the Login and Context Data Maintenance included visual interface testing.

In order to test the Modules, we created a set of drivers that invoked the various APIs functions offered by the modules with various inputs, while the output was inspected. Since the set of input has been specifically prescribed (both valid and invalid), the anticipated results were easy to predict (according to the specifications of the modules). The actual results were visually compared to the anticipated results to ensure compliance.

Where inconsistencies were found, they were noted, and most were corrected.

1.3.2. Success of Testing Process

The testing process was generally successful, however, there were conditions that were undetectable by this process. Though some of these problems have been caught earlier in the code inspection, other problems will be discovered when the component is fully integrated and the system tested as a whole, rather than a set of disparate modules. Furthermore, had the modules been 100% completed when they were tested (as opposed to an approximate 75%), more thorough test suites could have been designed.

Specifically, the problems involved testing complex scenarios as opposed to individual ones. Though the test performed on the Context Database module passed, they involved testing only singular API calls, for example, “Save an entity of a specific type,” “Define a specific entity type,” and “Load the specifications of a particular entity type.” It is possible, that if a more complex test scenario were developed where the test driver performed a number of these functions sequentially, such as “Save a (new) entity of a specific type,” “Load the entity,” (then the test module made some changes to the data), then “Save the entity,” the results may have not been as optimistic. Particularly, a very simple scenario of “Save some data” immediately followed by “Load the same data” should have been checked to ensure that the two actions performed sequentially yielded the exact data being loaded that had just been saved. Unfortunately, when the “Save data” API is called independently of the “Load data” in two distinct test modules, the data used by both test cases were also independent.

2. Inspection Report

2.1. Context Database Module

2.1.1. Overview

The Context Data model plays a central role in the Mothership. This module interacts with the database server for entering new data; queering context data; defining relationships; and defining entities. This module can also be extended to provide further services in the future. The module provides API’s for other external modules as well as for modules of the MotherShip. For example, the Define Entity Module.

2.1.2. Commenting and Coding Conventions

The modules followed the FuseBox methodology. They adhered to this methodology and no “bugs” were found.

2.1.3. Error Handling

The Context Database module has a wide array of error handling code. Since this module is the center of the MotherShip and in many was the heart of the whole CubCenter, special care was provided for error handling. The module inspects very carefully all parameters that are passed into it. The inspection vary from checking syntax, the quality of the value in the parameter. I.e. is the value of the parameter already defined within the system and does this value adhere to what is already defined in the system.

2.1.4. Defects

The defects that were found are related to the data validation. Since the module has a vast array of data some of this test were not compete. They would have generated errors that could make the system un-functional.

IRD.CD.401

Defect Type
Correctness

Description
Validating the length of an input string. May have caused data lose as well as inconsistencies in displaying parameter.

Fixed
Fixed.

Code was added to validate string length.

IRD.CD.402

Defect Type
Correctness (Data Integrity)

Description
Symbols that were inserted “artificially” could have caused a reading error by the database server at a later stage.

Fixed
Fixed.

The characters were removed.

2.2. Login Module

2.2.1. Overview

This interface is used to access the user ID of the currently logged in user, or to request that that user be logged out. If no user is logged in, this interface will invoke a login screen. This interface also allows a caller to determine if a user is logged into the system.

2.2.2. Commenting and Coding Conventions

The modules followed the FuseBox methodology. They adhered to this methodology and no “bugs” were found.

2.2.3. Error Handling

The “index.cfm” template does most the error handlings. It defaults all parameters that is needed, but it is not provided by the caller (whether it’s from an end-user inputs or a different module) to some internal default values.

In some cases, wherever the login module is calling some other modules and expecting some return value(s), the error is not handled.

2.2.4. Defects

The following defects/bugs were found during the code inspection:

IRDL.401.1

Defect Type
Correctness

Description
All file names do not adhere to the fusebox naming convention.

Fixed
Yes

IRDL.401.2

Defect Type
Correctness

Description
Some files do not have fusedoc documentation.

Fixed
Yes

IRDL.401.3

Defect Type
Correctness

Description
HTML files generated by the login page are not properly formatted HTML – they do not include <html>, <head>, and <body> tags.

Fixed
Yes

IRDL.401.4

Defect Type
Correctness

Description
Cold Fusion application name was “app”. This is prone to conflict with other Cold Fusion applications installed on that machine.

Fixed
Yes

IRDL.401.5

Defect Type
Completeness

Description
Application timeout is too short.

Fixed
Yes

IRDL.401.6

Defect Type
Correctness

Description
Application-wide variables are changed without any resource locking (such as <CFLock>)

Fixed
Yes

IRDL.401.7

Defect Type
Completed

Description
If someone leaves the site without logging off, his session is never removed from the total user count.

Fixed
Not yet.

Fixing this bug may lead to additional problems. The programmer is waiting until she has a good amount of time devoted to solving the problem.

2.3. Context Data Maintenance Module

2.3.1. Overview

The Context Data Maintenance model plays supplies a user interface to creating and updating either entities of the system or relationship. This module interacts with Context Database module for entering new data; queering context data; defining relationships; and defining entities.

2.3.2. Commenting and Coding Conventions

The modules followed the FuseBox methodology. The module did not fully adhered to the FuseBox methodology.

2.3.3. Error Handling

The module provides and interface for the user to sensitive system data. Each function in the module checks input parameters before processing them.

2.3.4. Defects

The defects that were found are related to the data validation. Since the module has a vast array of data some of this test were not compete. They would have generated errors that could make the system un-functional.

IRDDM.401.1

Defect Type
Correctness

Description
Some files do not adhered fusedoc documentation.

Fixed
Yes

IRDDM.401.2

Defect Type
Correctness

Description
Act_saveEntity.cfm was not passing the correct variable to MSCQ API.

Fixed
Yes

IRDDM.401.3

Defect Type
Wrong use of a CF tags

Description
Index.cfm was using the <cfmodule …> instead of the <cfinclude…>. It generated variables scope problem/s.

Fixed
Yes

IRDDM.401.4

Defect Type
Testability

Description
Code layout in index.cfm was “spaghetti like” and made very difficult.

Fixed
Yes

2.4. Audit Log Module

2.4.1. Overview

The Audit Log module maintains a log of all events that occurred in the system. Is similarity to a black hole this module has a one way interaction with other modules: it receives events and logs them into a database. The module is not responsible for the “quality” of the events description that he receives from the other modules. The module is designed to log information that may be later retrieved for analyzing modules and system behaviors.

2.4.2. Commenting and Coding Conventions

The module follows the FuseBox methodology. If also uses the ALI prefix for its shared variables.

2.4.3. Error Handling

The module stores all the calls that are made through the API. Hence, the only error handling concerns with validating that the caller defined that parameters. If a non definition exits, it is logged and marked.

2.4.4. Defects

IRD.AL.401

Defect Type
Correctness

Description
Wrong function call to validate an existence of a parameters. Caused inconsistencies in registering a valid data input.

Fixed
Fixed.

Function was changed. .

IRD.AL.402

Defect Type
Completeness

Description
Data registration was not complete; for all input possibilities.

Fixed
Fixed.

The code was changed to register all data inputs.

3. Unit Test Report

3.1. Context Database Module

3.1.1. Specification-Based Testing

3.1.1.1. Testing Suite

The Context Database Module was tested by creating a set of drivers that invoked the module’s APIs, passing in both correct and incorrect data. For the specification testing, the incorrect data was generally restricted to “wrong” data (i.e. the data types passed in were correct, but the values were not), as opposed to “bad data” (i.e. the data types were incorrect, or, in some cases, parameters were omitted). The “bad data” testing was performed as part of the Program-Based testing of this module, as all types of bad data were tested (i.e. parameter A was missing, parameter A was invalid type, etc…). Also, note the distinction between fail and reject:

· A request fails if the data is of the correct format, but not correct values.

· A request is rejected if the data is of invalid format, or missing.

The following API functions were tested:

Test
Function
Input
Expected Output

ST.CD.401
MSSD_ CreateEntity

Type
entityType=”test_person11”

displayName=”TestPerson”

canLogin=true

userID=1

attributes:

1. .attributeName=”name”

.displayName=”Name”

.dataType=”String”

.dataConstraints=”32”

.searchable=true

2. .attributeName=”age”

.displayName=”Age”

.dataType=”Number”

.dataConstraints=”3,0”

.searchable=false

3. .attributeName=”ssn”

.displayName=”Social Security Number”

.dataType=”regexp”

.dataConstraints=”11,[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]”

.searchable=false
Success:

MSSD_Status=0

ST.CD.402
MSSD_ Create Relationship

Type
relationshipType=”teacher”

displayName=”Teacher”

userID=1

Success:

MSSD_Status=0

ST.CD.403
MSCQ_ getEntity TypeDetails
entityType=”user”

Success:

MSCQ_Status=0

MSCQ_EntityType=”user”

MSCQ_DisplayName=”User”

MSCQ_CanLogin=true

MSCQ_Attributes:

1. .attributeName=”username”

.displayName=”User Name”

.dataType=”regexp”

.dataConstraints=”16,^[a-z][a-z,0-9]*$”

.searchable=true

2. .attributeName=”password”

.displayName=”Password”

.dataType=”String”

.dataConstraints=”64”

.searchable=false

ST.CD.404
MSCQ_ getEntity TypeDetails
entityType=”nonexistanttype”

Fail:

MSCQ_Status<>0

MSCQ_Error=(error message)

ST.CD.405
MSCQ_ getEntity TypeList
(none)
Success:

MSCQ_Status=0

MSCQ_EntityTypes:

1. .entityType=”class”

.displayName=”Class”

.canLogin=false

2. .entityType=”department”

.displayName=”Department”

.canLogin=false

3. .entityType=”person”

.displayName=”Person”

.canLogin=false

4. .entityType=”school”

.displayName=”School”

.canLogin=false

5. .entityType=”user”

.displayName=”User”

.canLogin=true

(possibly more entries)

ST.CD.406
MSCQ_get Relationship TypeList
(none)

Success:

MSCQ_Status=0

MSCQ_RelationshipTypes:

1. .relationshipType=”instructor”

.displayName=”Instructor”

2. .relationshipType=”student”

.displayName=”Student”

3. .relationshipType=”teacher”

.displayName=”Teacher”

4. .relationshipType= ”teachingassistant”

.displayName=”Teaching Assistant”

(possibly more entries)

ST.CD.406
MSCQ_get ValidRelationshipList
(none)

Success:

MSCQ_Status=0

MSCQ_ValidRelationships:

1. .relationshipType=”instructor”

.relationshipDisplayName=”Instructor”

.sourceEntityType=”person”

.sourceDisplayName=”Person”

.targetEntityType=”class”

.targetDisplayName=”Class”

2. .relationshipType=”student”

.relationshipDisplayName=”Student”

.sourceEntityType=”person”

.sourceDisplayName=”Person”

.targetEntityType=”class”

.targetDisplayName=”Class”

3. .relationshipType=”teachingassistant”

.relationshipDisplayName=”Teaching Assistant”

.sourceEntityType=”person”

.sourceDisplayName=”Person”

.targetEntityType=”class”

.targetDisplayName=”Class”

(possibly more entries)

3.1.1.2. Test Results

Result
Failed Reason

ST.CD.401
Passed

ST.CD.402
Passed

ST.CD.403
Passed

ST.CD.404
Passed

ST.CD.405
Passed

ST.CD.406
Passed

3.1.2. Program-Based Testing

3.1.2.1. Testing Suite

The program-based testing of the Context Database Module was an extension of the Specification Testing. Specifically, the APIs were now called with invalid or missing data as opposed to incorrect data. This is to test the scenarios that involve executing exception-based code, because the specification-based testing covered most of the normal execution code. In addition to the API functions, drivers were developed to test the internal functions of the module.

 Note the distinction between fail and reject in the results:

· A request fails if the data is of the correct format, but not correct values.

· A request is rejected if the data is of invalid format, or missing.

The following API functions were tested:

Test
Function
Input
Expected Output

PT.CD.401
MSCQ_ getEntity TypeDetails
entityType=”?invalidtype?”

Fail:

MSCQ_Status<>0

MSCQ_Error=(error message)

PT.CD.402
MSSD_ CreateEntity

Type
entityType=”user”

displayName=”TestPerson”

canLogin=true

userID=1

attributes:

1. .attributeName=”name”

.displayName=”Name”

.dataType=”String”

.dataConstraints=”32”

.searchable=true

2. .attributeName=”age”

.displayName=”Age”

.dataType=”Number”

.dataConstraints=”3,0”

.searchable=false

3. .attributeName=”ssn”

.displayName=”Social Security Number”

.dataType=”regexp”

.dataConstraints=”11,[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]”

.searchable=false
Reject:

MSSD_Status=-1

MSSD_Error=(error message – entity type exists)

PT.CD.403
MSSD_ Create Relationship

Type
relationshipType=”student”

displayName=”Student”

Fail:

MSSD_Status=-1

MSSD_Error=(error message – relationship type exists)

PT.CD.404
MSSD_ Create Relationship

Type
relationshipType=”?invalid?”

displayName=”Student”

Reject:

MSSD_Status=-1

MSSD_Error=(error message – invalid relationship type)

PT.CD.405
MSSD_ Create Relationship

Type
relationshipType=”?invalid?”

Reject:

MSSD_Status=-1

MSSD_Error=(error message –display name parameter missing)

PT.CD.406
MSSD_ Create Relationship

Type
displayName=”Student”
Reject:

MSSD_Status=-1

MSSD_Error=(error message –relationship type parameter missing)

PT.CD.407
MSSD_ CreateEntity

Type
displayName=”TestPerson”

canLogin=true

userID=1

attributes:

1. .attributeName=”name”

.displayName=”Name”

.dataType=”String”

.dataConstraints=”32”

.searchable=true

2. .attributeName=”age”

.displayName=”Age”

.dataType=”Number”

.dataConstraints=”3,0”

.searchable=false

3. .attributeName=”ssn”

.displayName=”Social Security Number”

.dataType=”regexp”

.dataConstraints=”11,[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]”

.searchable=false
Reject:

MSSD_Status=-1

MSSD_Error=(error message – entity type parameter missing)

PT.CD.408
MSSD_ CreateEntity

Type
entityType=”test_person11”

canLogin=true

userID=1

attributes:

1. .attributeName=”name”

.displayName=”Name”

.dataType=”String”

.dataConstraints=”32”

.searchable=true

2. .attributeName=”age”

.displayName=”Age”

.dataType=”Number”

.dataConstraints=”3,0”

.searchable=false

3. .attributeName=”ssn”

.displayName=”Social Security Number”

.dataType=”regexp”

.dataConstraints=”11,[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]”

.searchable=false
Reject:

MSSD_Status=-1

MSSD_Error=(error message – display name parameter missing)

PT.CD.409
MSSD_ CreateEntity

Type
entityType=”test_person11”

displayName=”TestPerson”

userID=1

attributes:

1. .attributeName=”name”

.displayName=”Name”

.dataType=”String”

.dataConstraints=”32”

.searchable=true

2. .attributeName=”age”

.displayName=”Age”

.dataType=”Number”

.dataConstraints=”3,0”

.searchable=false

3. .attributeName=”ssn”

.displayName=”Social Security Number”

.dataType=”regexp”

.dataConstraints=”11,[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]”

.searchable=false
Reject:

MSSD_Status<>0

MSSD_Error=(error message – canLogin parameter missing)

PT.CD.410
MSSD_ CreateEntity

Type
entityType=”test_person11”

displayName=”TestPerson”

canLogin=true

attributes:

1. .attributeName=”name”

.displayName=”Name”

.dataType=”String”

.dataConstraints=”32”

.searchable=true

2. .attributeName=”age”

.displayName=”Age”

.dataType=”Number”

.dataConstraints=”3,0”

.searchable=false

3. .attributeName=”ssn”

.displayName=”Social Security Number”

.dataType=”regexp”

.dataConstraints=”11,[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]”

.searchable=false
Reject:

MSSD_Status<>0

MSSD_Error=(error message – userID parameter missing)

PT.CD.411
MSSD_ CreateEntity

Type
entityType=”test_person11”

displayName=”TestPerson”

canLogin=true

userID=1
Reject:

MSSD_Status<>0

MSSD_Error=(error message – attributes parameter missing)

PT.CD.412
MSSD_ CreateEntity

Type
entityType=”test_person11”

displayName=”TestPerson”

canLogin=true

userID=1

attributes:

1. .displayName=”Name”

.dataType=”String”

.dataConstraints=”32”

.searchable=true

2. .attributeName=”age”

.displayName=”Age”

.dataType=”Number”

.dataConstraints=”3,0”

.searchable=false

3. .attributeName=”ssn”

.displayName=”Social Security Number”

.dataType=”regexp”

.dataConstraints=”11,[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]”

.searchable=false
Reject:

MSSD_Status<>0

MSSD_Error=(error message – first attribute, attributeName parameter missing)

PT.CD.413
MSSD_ CreateEntity

Type
entityType=”test_person11”

displayName=”TestPerson”

canLogin=true

userID=1

attributes:

1. .attributeName=”name”

. dataType=”String”

.dataConstraints=”32”

.searchable=true

2. .attributeName=”age”

.displayName=”Age”

.dataType=”Number”

.dataConstraints=”3,0”

.searchable=false

3. .attributeName=”ssn”

.displayName=”Social Security Number”

.dataType=”regexp”

.dataConstraints=”11,[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]”

.searchable=false
Reject:

MSSD_Status<>0

MSSD_Error=(error message – first attribute, displayName parameter missing)

PT.CD.414
MSSD_ CreateEntity

Type
entityType=”test_person11”

displayName=”TestPerson”

canLogin=true

userID=1

attributes:

1. .attributeName=”name”

.displayName=”Name”

.dataConstraints=”32”

.searchable=true

2. .attributeName=”age”

.displayName=”Age”

.dataType=”Number”

.dataConstraints=”3,0”

.searchable=false

3. .attributeName=”ssn”

.displayName=”Social Security Number”

.dataType=”regexp”

.dataConstraints=”11,[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]”

.searchable=false
Reject:

MSSD_Status<>0

MSSD_Error=(error message – first attribute, dataType parameter missing)

PT.CD.415
MSSD_ CreateEntity

Type
entityType=”test_person11”

displayName=”TestPerson”

canLogin=true

userID=1

attributes:

1. .attributeName=”name”

.displayName=”Name”

.dataType=”String”

.searchable=true

2. .attributeName=”age”

.displayName=”Age”

.dataType=”Number”

.dataConstraints=”3,0”

.searchable=false

3. .attributeName=”ssn”

.displayName=”Social Security Number”

.dataType=”regexp”

.dataConstraints=”11,[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]”

.searchable=false
Reject:

MSSD_Status<>0

MSSD_Error=(error message – first attribute, dataConstraints parameter missing)

PT.CD.416
MSSD_ CreateEntity

Type
entityType=”test_person11”

displayName=”TestPerson”

canLogin=true

userID=1

attributes:

1. .attributeName=”name”

.displayName=”Name”

.dataType=”String”

.dataConstraints=”32”

2. .attributeName=”age”

.displayName=”Age”

.dataType=”Number”

.dataConstraints=”3,0”

.searchable=false

3. .attributeName=”ssn”

.displayName=”Social Security Number”

.dataType=”regexp”

.dataConstraints=”11,[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9][0-9][0-9]”

.searchable=false
Reject:

MSSD_Status<>0

MSSD_Error=(error message – first attribute, searchable parameter missing)

PT.CD.417
MSSD_ Validate EntityID
entityType=”user”

entityID=”1”

Success:

MSCHelper_Status=0

MSCHelper_EntityIDValid=true

PT.CD.418
MSSD_ Validate EntityID
entityType=”user”

entityID=”500”

Success:

MSCHelper_Status=0

MSCHelper_EntityIDValid=false

PT.CD.419
MSSD_ Validate EntityID
entityType=”user”

entityID=”?bad type?”

Reject:

MSCHelper_Status<>0

MSCHelper_Error= error message (entityID invalid type)

PT.CD.420
MSSD_ Validate EntityID
entityType=”nonexistanttype”

entityID=”1”

Success:

MSCHelper_Status=0

MSCHelper_EntityIDValid=false

PT.CD.421
MSSD_ Validate EntityID
entityType=” nonexistanttype”

entityID=”500”

Success:

MSCHelper_Status=0

MSCHelper_EntityIDValid=false

PT.CD.422
MSSD_ Validate EntityID
entityType=”user”

entityID=”?bad type?”

Reject:

MSCHelper_Status<>0

MSCHelper_Error= error message (entityID invalid type)

PT.CD.423
MSSD_ Validate EntityID
entityType=”?bad type?”

entityID=”1”

Reject:

MSCHelper_Status<>0

MSCHelper_Error= error message (entityType invalid type)

PT.CD.424
MSSD_ Validate Relationship

Type
relationshipType=”student”

checkDatabase=false

Success:

MSCHelper_Status=0

MSCHelper_RelationshipTypeValid=true

MSCHelper_RelationshipTypeExists=false

PT.CD.425
MSSD_ Validate Relationship

Type
relationshipType=”student”

checkDatabase=true

Success:

MSCHelper_Status=0

MSCHelper_RelationshipTypeValid=true

MSCHelper_RelationshipTypeExists=true

PT.CD.426
MSSD_ Validate Relationship

Type
relationshipType=”nonexistanttype”

checkDatabase=false

Success:

MSCHelper_Status=0

MSCHelper_RelationshipTypeValid=true

MSCHelper_RelationshipTypeExists=false

PT.CD.427
MSSD_ Validate Relationship

Type
relationshipType=”nonexistanttype”

checkDatabase=true

Success:

MSCHelper_Status=0

MSCHelper_RelationshipTypeValid=true

MSCHelper_RelationshipTypeExists=false

PT.CD.428
MSSD_ Validate Relationship

Type
relationshipType=”?invalid?”

checkDatabase=false

Success:

MSCHelper_Status=0

MSCHelper_RelationshipTypeValid=false

MSCHelper_RelationshipTypeExists=false

3.1.2.2. Test Results

Result
Failed Reason

PT.CD.401
Passed

PT.CD.402
Passed

PT.CD.403
Passed

PT.CD.404
Passed

PT.CD.405
Passed

PT.CD.406
Passed

PT.CD.407
Passed

PT.CD.408
Passed

PT.CD.409
Passed

PT.CD.410
Passed

PT.CD.411
Passed

PT.CD.412
Passed

PT.CD.413
Passed

PT.CD.414
Passed

PT.CD.415
Passed

PT.CD.416
Failed
Program crashed. It wasn’t requiring searchable to exist

PT.CD.417
Passed

PT.CD.418
Passed

PT.CD.419
Passed

PT.CD.420
Passed

PT.CD.421
Passed

PT.CD.422
Passed

PT.CD.423
Passed

PT.CD.424
Passed

PT.CD.425
Passed

PT.CD.426
Passed

PT.CD.427
Passed

PT.CD.428
Passed

3.1.2.3. Defects

The following defects were found:

PTDCD.416.1

Defect Type
Correctness

Description
The code tried to use a parameter, attributes.searchable, without first confirming its existence.

Fixed
Yes

3.2. Login Module

3.2.1. Specification-Based Testing

3.2.1.1. Testing Suite

The Login Module was tested by creating a set of drivers that invoked the module’s APIs, passing in both correct and incorrect data and interacting with the screens, as necessary. For the specification testing, the incorrect data was generally restricted to “wrong” data (i.e. the data types passed in were correct, but the values were not), as opposed to “bad data” (i.e. the data types were incorrect, or, in some cases, parameters were omitted). The “bad data” testing was performed as part of the Program-Based testing of this module, as all types of bad data were tested (i.e. parameter A was missing, parameter A was invalid type, etc…). Also, note the distinction between fail and reject:

· A request fails if the data is of the correct format, but not correct values.

· A request is rejected if the data is of invalid format, or missing.

The following API functions were tested:

Test
Function
Input
Expected Output

ST.L.401
MSL_GetLogin
ReturnURL=”valid.cfm”
ModuleName=”Login”

(When the user is not logged in yet)
Success:

Redirect to the login page

ST.L.402
MSL_GetLogin
ReturnURL = “valid.cfm”

ModuleName = ”Login”

(When ID “1” is logged in)
Success:

MSL_PersonID = “1”
Message “User 1 is already logged into the system...” is displayed

ST.L.403
MSL_GetLogin – CheckID.cfm
ReturnURL = “valid.cfm”

ModuleName=”Login”

User entered username “1” and password “10”

(No user is logged in)
Fails:

An alert message “Error: Invalid Cub Center ID/Password!!!” pops up, redirect back to the login page

ST.L.404
MSL_GetLogin – CheckID.cfm
(parameters passed to getLoginInfo)

ReturnURL = “valid.cfm”

ModuleName=”Login”
User entered data:

Username=”Administrator”

Password=””
Success:

Redirect to page “valid.cfm”

ST.L.405
MSL_GetUser LoginStatus
PersonID=”1”

(When ID “1” and “5” is logged in)
Success:

MSL_LoggedIn = “1”
MSL_Module = “Login”

ST.L.406
MSL_GetUSerLoginStatus (When ID “1” and “5” is logged in)
PersonID=”5”

Success:

MSL_LoggedIn = “5”
MSL_Module = “Login”

ST.L.407
MSL_GetUSerLoginStatus (When ID “1” and “5” is logged in)
PersonID=”2”

Success:

MSL_LoggedIn = “0”
MSL_Module = “”

ST.L.408
MSL_Logout (When ID “1” is logged in)
(none)

Success:

Message:

Logged Out Successful!!!

user "1" is successfully logged out!!!

Last Module that was accessed by this user: Login Module

Is displayed.

3.2.1.2. Test Results

Result
Failed Reason

ST.L.401
Passed

ST.L.402
Passed

ST.L.403
Passed

ST.L.404
Passed

ST.L.405
Passed

ST.L.406
Passed

ST.L.407
Passed

ST.L.408
Passed

3.2.2. Program-Based Testing

3.2.2.1. Testing Suite

The program-based testing of the Login Module was an extension of the Specification Testing. Specifically, the APIs were now called with invalid or missing data as opposed to incorrect data. This is to test the scenarios that involve executing exception-based code, because the specification-based testing covered most of the normal execution code. In addition to the API functions, drivers were developed to test the internal functions of the module.

 Note the distinction between fail and reject in the results:

· A request fails if the data is of the correct format, but not correct values.

· A request is rejected if the data is of invalid format, or missing.

The following API functions were tested:

Test
Function
Input
Expected Output

ST.L.401
MSL_GetLogin
ReturnURL=”valid.cfm”
ModuleName=”Login”

(When the user is not logged in yet)
Success:

Redirect to the login page

ST.L.402
MSL_GetLogin
ReturnURL = “valid.cfm”

ModuleName = ”Login”

(When ID “1” is logged in)
Success:

MSL_PersonID = “1”
Message “User 1 is already logged into the system...” is displayed

ST.L.403
MSL_GetLogin – CheckID.cfm
ReturnURL = “valid.cfm”

ModuleName=”Login”

User entered:

Username=””

Password=””
Rejected:

An alert message “Error: Invalid Cub Center ID/Password!!!” pops up, redirect back to the login page

ST.L.404
MSL_GetLogin – CheckID.cfm
ReturnURL = “valid.cfm”

ModuleName=”Login”

User entered:

Username=”1”

Password=””
Rejected:

An alert message “Error: Invalid Cub Center ID/Password!!!” pops up, redirect back to the login page

ST.L.405
MSL_GetLogin – CheckID.cfm
ReturnURL = “valid.cfm”

ModuleName=”Login”

User entered:

Username=””

Password=”10”
Rejected:

An alert message “Error: Invalid Cub Center ID/Password!!!” pops up, redirect back to the login page

ST.L.406
MSL_GetLogin – CheckID.cfm
ReturnURL = “valid.cfm”

ModuleName=”Login”

User entered:

Username=”XXX”

Password=””
Rejected:

An alert message “Error: Invalid Cub Center ID/Password!!!” pops up, redirect back to the login page

ST.L.407
MSL_Get Login – CheckID.cfm
ReturnURL = “valid.cfm”

ModuleName=”Login”

User entered:

Username=”1”

Password=”10”
Fails:

An alert message “Error: Invalid Cub Center ID/Password!!!” pops up, redirect back to the login page

ST.L.408
MSL_Get Login – CheckID.cfm
ReturnURL = “valid.cfm”

ModuleName=”Login”

User entered:

Username=”Administrator”

Password=””
Success:

Redirect to page “valid.cfm”

ST.L.409
MSL_GetUserLoginStatus
PersonID=””

(When ID “1” and “5” is logged in)
Rejected:

MSL_LoggedIn = “”
MSL_Module = “”

Message “User is not currently logged on to the system!!!” will be displayed.

ST.L.410
MSL_GetUserLoginStatus
PersonID=”XXX”

(When ID “1” and “5” is logged in)
Rejected:

MSL_LoggedIn = “”
MSL_Module = “”

Message “XXX is not a valid ID” will be displayed.

ST.L.411
MSL_GetUserLoginStatus
PersonID=”10”

(When ID “1” and “5” is logged in)
Success:

MSL_LoggedIn = “”
MSL_Module = “”

Message “User10 is not currently logged on to the system!!!” will be displayed.

ST.L.411
MSL_GetUserLoginStatus
PersonID=”4”

(When ID “1” and “5” is logged in)
Success:

MSL_LoggedIn = “”
MSL_Module = “”

Message “User4 is not currently logged on to the system!!!” will be displayed.

ST.L.412
MSL_GetUserLoginStatus
PersonID=”1”

(When ID “1” and “5” is logged in)
Success:

MSL_LoggedIn = “1”
MSL_Module = “Login”

Message “User 1 is currently logged on to the system!!!
Last module accessed was Login Module.” Will be displayed

ST.L.412
MSL_GetUserLoginStatus
PersonID=”5”

(When ID “1” and “5” is logged in)
Success:

MSL_LoggedIn = “5”
MSL_Module = “Login”

Message “User 5 is currently logged on to the system!!!
Last module accessed was Login Module.” Will be displayed

ST.L.413
MSL_Logout
(none)

(When ID “1” is logged in)
Success:
Message:

Logged Out Successful!!!
user "1" is successfully logged out!!!

Last Module that was accessed by this user: Login Module

Is displayed.

ST.L.414
MSL_Logout
(none)

(When user is not logged in)
Success:
Message:

There is no user currently logged on to the system!!!
Is displayed.

3.2.2.2. Test Results

Result
Failed Reason

ST.L.401
Passed

ST.L.402
Passed

ST.L.403
Passed

ST.L.404
Passed

ST.L.405
Passed

ST.L.406
Passed

ST.L.407
Passed

ST.L.408
Passed

ST.L.409
Passed

ST.L.410
Passed

ST.L.411
Passed

ST.L.412
Passed

ST.L.413
Passed

ST.L.414
Passed

3.3. Context Data Maintenance UI Module

3.3.1. Specification-Based Testing

3.3.1.1. Testing Suite

The Context Data Maintenance was tested by creating a set of drivers that invoked the module’s APIs, passing in both correct and incorrect data and interacting with the screens, as necessary. For the specification testing, the incorrect data was generally restricted to “wrong” data (i.e. the data types passed in were correct, but the values were not), as opposed to “bad data” (i.e. the data types were incorrect, or, in some cases, parameters were omitted). The “bad data” testing was performed as part of the Program-Based testing of this module, as all types of bad data were tested (i.e. parameter A was missing, parameter A was invalid type, etc…). Also, note the distinction between fail and reject:

· A request fails if the data is of the correct format, but not correct values.

· A request is rejected if the data is of invalid format, or missing.

Test
Function
Input
Expected Output

ST.DM.401
dsp_showDmMenu
(none)

User selects CreateEntity
Success:

Action = “ createEntity”

ST.DM.402
dsp_showDmMenu
(none)

User selects editEntity
Success:

Action = “ editEntity”

ST.DM.403
dsp_showDmMenu
(none)

User selects removeEntity
Success:

Action = ” removeEntity”

ST.DM.404
dsp_showDmMenu
(none)

User selects createRelationship
Success:

Action = “createRelationship”

ST.DM.405
dsp_showDmMenu
(none)

User selects editRelationship
Success:

Action = “editRelationship”

ST.DM.406
dsp_showDmMenu
(none)

User selects removeRelationship
Success:

Action = “removeRelationship”

ST.DM.407
dsp_selectEntityType
EntityTypes = sampleEntityType

“person”

“EntityType2”

 ..

“EntityType10”

Action = “createEntity”
Success:

Showed all the EntityType on the selecting form.

ST.DM.408
dsp_selectEntityType
EntityTypes = sampleEntityType

“person”

“EntityType2”

 ..

“EntityType10”

Action = “createEntity”
Success:

Select One EntityType

EntityType = “person”

ST.DM.409
act_createBlankEntity
ETypeAttributes = sample

EntityType

“person”
Success:

EntityAttributes=BlankEntity

 Details

ST.DM.410
dsp_editEntity
EntityAttributes =

 BlankEntityDetails
EntityType = “person”

ETypeDisplayName = “Person”

ETypeAttributes =

 person’s attributes
Success:

EntityAttributes =

 NewAttributes

ST.DM.411
act_saveEntity
EntityType = “person”

EntityAttributes = NewAttributes
Success:

Status = true

ST.DM.411
act_saveEntity
EntityType = “person”

EntityAttributes = BadAttributes
Success:

Status = false

3.3.1.2. Test Results

Result
Failed Reason

ST.DM.401
Passed

ST.DM.402
Passed

ST.DM.403
Passed

ST.DM.404
Passed

ST.DM.405
Passed

ST.DM.406
Passed

ST.DM.407
Passed

ST.DM.408
Passed

ST.DM.409
Failed
When Entity’s data type was Entity return invalid parameter

ST.DM.410
Passed

ST.DM.411
Passed

3.3.1.3. Defects

ST.DDM.409.1

Defect Type
Correctness

Description
Code does not properly support attributes whose data type is “entity”.

Fixed
In progress.

Supporting attributes whose type are “entity” (i.e. are linked to an entity) is a complex process.

3.3.2. Program-Based Testing

3.3.2.1. Testing Suite

The following API functions were tested:

Test
Function
Input
Expected Output

PT.DM.401
dsp_showDmMenu
(none)

User selects CreateEntity
Success:

Action = “ createEntity”

PT.DM.402
dsp_showDmMenu
(none)

User selects editEntity
Success:

Action = “ editEntity”

PT.DM.403
dsp_showDmMenu
(none)

User selects removeEntity
Success:

Action = ” removeEntity”

PT.DM.404
dsp_showDmMenu
(none)

User selects createRelationship
Success:

Action = “createRelationship”

PT.DM.405
dsp_showDmMenu
(none)

User selects editRelationship
Success:

Action = “editRelationship”

PT.DM.406
dsp_showDmMenu
(none)

User selects removeRelationship
Success:

Action = “removeRelationship”

PT.DM.407
dsp_selectEntityType
EntityTypes = sampleEntityType

“person”

“EntityType2”

 ..

“EntityType10”

Action = “createEntity”
Success:

Showed all the EntityType on the selecting form.

PT.DM.408
dsp_selectEntityType
EntityTypes = sampleEntityType

“person”

“EntityType2”

 ..

“EntityType10”

Action = “createEntity”
Success:

Select One EntityType

EntityType = “person”

PT.DM.409
dsp_selectEntityType
EntityTypes = bad NULL array
Action = “createEntity”
Reject:

Status = 1

PT.DM.410
dsp_selectEntityType
EntityTypes = sampleEntityType

“person”

“EntityType2”

 ..

“EntityType10”

Action = bad NULL action
Reject:

Status = 1

PT.DM.411
act_createBlankEntity
ETypeAttributes = sample

EntityType

“person”
Success:

EntityAttributes=BlankEntity

 Details

PT.DM.412
act_createBlankEntity
ETypeAttributes = bad NULL

 array
Reject:

Status = 1

PT.DM.413
dsp_editEntity
EntityAttributes =

 BlankEntityDetails
EntityType = “person”

ETypeDisplayName = “Person”

ETypeAttributes =

 person’s attributes
Success:

EntityAttributes =

 NewAttributes

PT.DM.414
dsp_editEntity
EntityAttributes =

 Bad Null Data

EntityType = “person”

ETypeDisplayName = “Person”

ETypeAttributes =

 person’s attributes
Reject:

Status = 1

PT.DM.415
dsp_editEntity
EntityAttributes =

 BlankEntityDetails
EntityType = Bad Null Data

ETypeDisplayName = “Person”

ETypeAttributes =

 person’s attributes
Reject:

Status = 1

PT.DM.416
dsp_editEntity
EntityAttributes =

 BlankEntityDetails
EntityType = “person”

ETypeDisplayName =

 Bad Null Data

ETypeAttributes =

 person’s attributes
Reject:

Status = 1

PT.DM.417
dsp_editEntity
EntityAttributes =

 BlankEntityDetails
EntityType = “person”

ETypeDisplayName = “Person”

ETypeAttributes =

 Bad Null Data
Reject:

Status = 1

PT.DM.418
act_saveEntity
EntityType = “person”

EntityAttributes = NewAttributes
Success:

Status = true

PT.DM.419
act_saveEntity
EntityType = “person”

EntityAttributes = BadAttributes
Success:

Status = false

PT.DM.420
act_saveEntity
EntityType = Bad Null Data

EntityAttributes = BadAttributes
Reject:

Status = 1

PT.DM.421
act_saveEntity
EntityType = “person”

EntityAttributes = Bad Null Data
Reject:

Status = 1

3.3.2.2. Test Results

Result
Failed Reason

PT.DM.401
Passed

PT.DM.402
Passed

PT.DM.403
Passed

PT.DM.404
Passed

PT.DM.405
Passed

PT.DM.406
Passed

PT.DM.407
Passed

PT.DM.408
Passed

PT.DM.409
Passed

PT.DM.410
Passed

PT.DM.411
Failed
When Entity’s date type was Entity return invalid parameter

PT.DM.412
Passed

PT.DM.413
Passed

PT.DM.414
Passed

PT.DM.415
Passed

PT.DM.416
Passed

PT.DM.417
Passed

PT.DM.418
Passed

PT.DM.419
Passed

PT.DM.420
Failed
Crashed

PT.DM.421
Failed
Crashed

3.3.2.3. Defects

PT.DDM.411.1 ((This is the same bug in ST.DDM.409.1

Defect Type
Correctness

Description
Code does not properly support attributes whose data type is “entity”.

Fixed
In progress.

Supporting attributes whose type are “entity” (i.e. are linked to an entity) is a complex process.

PT.DDM.420.1

Defect Type
Correctness

Description
Null parameters were causing the program to branch to an incorrect set of code.

Fixed
Yes

PT.DDM.420.1

Defect Type
Correctness

Description
Null parameters were causing the program to branch to an incorrect set of code.

Fixed
Yes

3.4. Audit Log Interface

3.4.1. Specification-Based Testing

3.4.1.1. Testing Suite

The testing suite was devised by calling the API functions as they are documented.

Test
Function
Input
Expected Output

ST.ALI.401
MSALI_LogEvent
priority=100
moduleName=”Context”
activity=”login”

Success:

Log as “normal” event.

ST.ALI.402
MSALI_LogEvent
priority=200
moduleName=”Context”
activity=”login”

activityInfo=”login a user for the first time.”

Success:

Log as “normal” event.

ST.ALI.403
MSALI_LogEvent
priority=200
moduleName=”Contextttttttttttttttt”
activity=”logincjdfljsdlfjsdl”

activityInfo=”login a user for the first time.”

Success:

Log as “unnormal” event

ST.ALI.404
MSALI_LogEvent
priority=100
moduleName=”CalenDAR”
activity=”New Post”

activityInfo=”A new post for CS156 was posted today on the board”

personId=1234567

Success:

Log as “normal” event.

ST.ALI.405
MSALI_LogEvent
priority=300
moduleName=”Virtual_ta_room”
activity=”New Post”

activityInfo=”A new post for CS156 was posted today on the board”

personId=1234567

Success:

Log as “normal” event.

3.4.1.2. Test Results

Result
Failed Reason

ST.ALI.401
Passed

ST.ALI.402
Passed

ST.ALI.403
Passed

ST.ALI.404
Passed

ST.ALI.405
Passed

3.4.2. Program-Based Testing

3.4.2.1. Testing Suite

The program-based testing of the Audit Log Insertion Login Module is an extension of the Specification Testing. Specifically, the APIs were now called with invalid or missing data as opposed to incorrect data. This is to test the scenarios that involve executing exception-based code, because the specification-based testing covered most of the normal execution code.

The following API functions were tested:

Test
Function
Input
Expected Output

ST.ALI.401
MSALI_LogEvent
None

Success:

Log as “unnormal” event

ST.ALI.402
MSALI_LogEvent
priority=100
moduleName=”Context”
Success:

Log as “unnormal” event

ST.ALI.403
MSALI_LogEvent
priority=100
moduleName=”Context”

activity=”login”
Success:

Log as “normal” event

ST.ALI.404
MSALI_LogEvent
priority=””
moduleName=””

activity=””
Success:

Log as “unnormal” event

ST.ALI.405
MSALI_LogEvent
priority=””
moduleName=””

activity=””

personId=”123456789”
Success:

Log as “unnormal” event

ST.ALI.406
MSALI_LogEvent
priority=”100”
moduleName=”Bulletin_Board”

activity=”New Message”

personId=”12345”
Success:

Log as “normal” event

ST.ALI.407
MSALI_LogEvent
priority=”100”
moduleName=”Bulletin_Board”

activity=”New Message”

activityInfo=”A very long text of info to augment and explain what the module is entering”

personId=”12345”
Success:

Log as “normal” event

ST.ALI.408
MSALI_LogEvent
priority=”100”
moduleName=”Bulletin_Board”

activityInfo=”A very long text of info to augment and explain what the module is entering”

personId=”12345”
Success:

Log as “unnormal” event

ST.ALI.409
MSALI_LogEvent
priority=”100”
moduleName=”Bulletin_Board”

activityInfo=”A very long text of info to augment and explain what the module is entering”

personId=”12345”
Success:

Log as “normal” event

ST.ALI.410
MSALI_LogEvent
priority=”100”
moduleName=”Context”

activityInfo=”A very long text of info to augment and explain what the module is entering”

personId=”12345”
Success:

Log as “normal” event

ST.ALI.411
MSALI_LogEvent
priority=”100”
moduleName=”Virtual_TA_Room”

activityInfo=”A very long text of info to augment and explain what the module is entering”

personId=”-3457”
Success:

Log as “unnormal” event

3.4.2.2. Test Results

Result
Failed Reason

PT.ALI.401
Passed

PT.ALI.402
Passed

PT.ALI.403
Passed

PT.ALI.404
Passed

PT.ALI.405
Passed

PT.ALI.406
Passed

PT.ALI.407
Passed

PT.ALI.408
Passed

PT.ALI.409
Passed

PT.ALI.410
Passed

PT.ALI.411
Passed

4. Integration Test Report

All integration was performed on an incremental basis, adding one module at a time. Because of this, we do not have separate logical groupings and entire component.

4.1. Login module + Context Database Module

By bringing together the Login Module and Context Database Module, we were able to test the Login Module’s ability to retrieve login information through the Context Database Module.

4.1.1. Testing suite

We re-ran the specification-based tests for the Login Module, defined in section 3.2.1.1.

4.1.2. Results

Result
Failed Reason

ST.L.401
Failed
Login module failed to abort after login screen was displayed.

ST.L.402
Passed

ST.L.403
Passed

ST.L.404
Failed
Login module failed to properly redirect to desired page.

ST.L.405
Passed

ST.L.406
Passed

ST.L.407
Passed

ST.L.408
Passed

4.1.3. Defects

The following defects were found:

ITD.LCD.401.1

Defect Type
Completeness

Description
The login module failed to abort the program after displaying the login page. This caused the calling module to assume that login was successful, and crashed.

Fixed
Yes

ITD.LCD.404.1

Defect Type
Correctness

Description
The login module used <CFModule> instead of <CFLocation> to redirect to the calling page. This failed if the page was on a different server.

Fixed
Yes

4.2. Login module + Context Database Module + Context Maintenance UI

By bringing together the Login Module and Context Database Module (from 4.1) with the Context Maintenance UI, we were able to test a module that makes use of both login information and context data information.

4.2.1. Testing suite

We re-ran the specification-based tests for the Login Module, defined in section 3.2.1.1 and the specification-based test for the Context Maintenance Module, defined in 3.3.1.1. These tests were run after the login interface defects detected in section 4.2 were corrected.

4.2.2. Results

Result
Failed Reason

ST.L.401
Passed

ST.L.402
Passed

ST.L.403
Passed

ST.L.404
Passed

ST.L.405
Passed

ST.L.406
Passed

ST.L.407
Passed

ST.L.408
Passed

Result
Failed Reason

ST.DM.401
Failed

Passed
This call failed (due to the login module) the first time, but then succeeded on a second try.

ST.DM.402
Passed

ST.DM.403
Passed

ST.DM.404
Passed

ST.DM.405
Passed

ST.DM.406
Passed

ST.DM.407
Passed

ST.DM.408
Passed

ST.DM.409
Failed
1. MSCQ_getEntityTypeDetails was being called with invalid parameters

2. The return status was not checked to gracefully handle the error, and the program crashed.

ST.DM.410
Passed

ST.DM.411
Passed

4.2.3. Defects

The following defects were found:

ITD.LCDCM.401.1

Defect Type
Completeness

Description
The login page was displayed, as specified, when this function was called and there was nobody on the system. Because the login form was being executed from a different directory (Data Maintenance instead of Login), the wrong module was called to process the login information.

Fixed
Yes. The form now uses the absolute path to the login module.

ITD.LCDCM.409.1

Defect Type
Correctness

Description
No entityType was passed to the MSCQ_getEntityTypeDetails call.

Fixed
Yes

ITD.LCDCM.409.2

Defect Type
Correctness

Description
The status of the MSCQ_getEntityTypeDetails (MSCQ_Status) was not checked to detect that the call had failed. This caused the program to crash.

Fixed
No.

This problem exists throughout the module. It is currently being corrected.

4.3. Login module + Context Database Module + Context Maintenance UI + Audit Log Interface

By bringing together the Login Module, Context Database Module and Context Maintenance UI (from 4.2) with the Audit Log, we were able to test the modules’ ability to log events on valid context data.

4.3.1. Testing suite

We re-ran the specification-based tests for the Context Database Module, defined in 3.1.1.1, Login Module, defined in section 3.2.1.1 and the specification-based test for the Context Maintenance Module, defined in 3.3.1.1. These tests were run after the login interface defects detected in section 4.2 were corrected.

4.3.2. Results

Result
Failed Reason

ST.CD.401
Passed

ST.CD.402
Passed

ST.CD.403
Passed

ST.CD.404
Passed

ST.CD.405
Passed

ST.CD.406
Passed

Result
Failed Reason

ST.L.401
Passed

ST.L.402
Passed

ST.L.403
Passed

ST.L.404
Passed

ST.L.405
Passed

ST.L.406
Passed

ST.L.407
Passed

ST.L.408
Failed
Program referred to a variable MSCQ_EntityID that did not exist, and crashed.

Result
Failed Reason

ST.DM.401
Passed

ST.DM.402
Passed

ST.DM.403
Passed

ST.DM.404
Passed

ST.DM.405
Passed

ST.DM.406
Passed

ST.DM.407
Passed

ST.DM.408
Passed

ST.DM.409
Passed

ST.DM.410
Passed

ST.DM.411
Passed

4.3.3. Defects

The following defects were found:

ITD.LCDCMALI.401.1

Defect Type
Completeness

Description
The login module tried to use a variable called MSCQ_EntityID to log the logout event. The correct variable was backupID

Fixed
Yes.

5. References and Glossary

Code Inspection of the Context Database Module was Performed at Lerner Hall on 4/5/2001 with the following team members present:

· Akira Tsukamoto (Recorder)

· Aner Fust (Moderator)

· Steven Osman (Coder)

Code Inspection of the Login Module was Performed at Lerner Hall on 4/6/2001 with the following team members present:

· Akira Tsukamoto (Recorder)

· Steven Osman (Moderator)

· Catherine Chang (Coder)

Code Inspection of the Context Data Maintenance Module was Performed at Lerner Hall on 4/8/2001 with the following team members present:

· Steven Osman (Recorder)

· Aner Fust (Moderator)

· Akira Tsukamoto (Coder)

Code Inspection of the Audit Log Insertion Module was Performed at Lerner Hall on 4/8/2001 with the following team members present:

· Steven Osman (Recorder)

· Akira Tsukamoto (Moderator)

· Aner Fust (Coder)

Integration Testing was performed at Lerner Hall on 4/8/2001 and 4/9/2001 with the following members present:

· Steven Osman

· Akira Tsukamoto

· Catherine Chang

· Aner Fust

6. Appendices

(intentionally left blank)

