hotFision – Initial System Interfaces

Initial System Interfaces

March 23, 2001

Component: Bulletin Board System
Group: hotFision
Group TA: Shen Li (sl697)

Team members:

Table of Contents
1. Introduction

3

2. Context Description

4

2.1 System Context Diagram - Exported Interface(s)

4

2.2 Exported Interface
s

4

3. Import API and Schemas

9

3.1 System Context Diagram - Imported Interfaces

10

3.2 For Each Imported Interface

10

4. References and Glossary

13

	1. Introduction

BlueBoard system currently requires three imported interfaces:

Authentication: The context component (Mothership) will store all user information centrally, including userID, password, class schedule, authority level, etc. The authentication interface will allow our BlueBoard and the other components to retrieve that information as users attempt to login to BlueBoard. The information provided by this interface will also help construct boards relevant to only the user's schedule of classes

Class List: The Mothership will (presumably) store the list of all classes. This interface will automate the other components' retrieval of that list of classes for whatever their use in constructing databases, bulletin boards, etc.

Event: the event interface will allow BlueBoard to update the Mothership's log whenever significant changes occur worthy of logging. For example, if a forum is added or deleted, or possibly even message addition or deletion, depending on administrative preferences.

BlueBoard will provide other components with these exported interfaces:

InstaPost: The InstaPost interface will give other components a way to allow users to post to BlueBoard from any component. Other components will simply be able to include a chunk of code that will display a "post to message board" option to users. With basic class, forum, and user information, BlueBoard will interpret the message and post it to the appropriate forum

HotPost: The HotPost interface allows other components to easily access "Hot Posts" to BlueBoard and display them to users (or at least note the hot discussion going on) without users' having to leave their current component.

QuickLink: QuickLink is a ‘smart URL’ of sorts that will know where to take the user in BlueBoard based on the current module being provided. For example, if the user is in the Home Work module and looking at an assignment for CS3156, then the QuickLink will know to send the user to the BlueBoard CS3156 forum.
AutoPost: AutoPost will give other components the ability to generate posts to the bulletin board automatically in case of an urgent event. For instance, if the due date of a particular assignment is changed in the homework/grade component, the TA or Professor will have the option to send an update to the appropriate class and forum on BlueBoard.

AutoAddForum: autoAddForum will automatically update forums for the class boards on BlueBoard when other components mandate new forums. For example, if a new homework is assigned and created in the homework/grade component, a new forum will be automatically created in the appropriate BlueBoard class.

	2. Context Description

2.1 System Context Diagram - Exported Interface(s)

[image: image1.wmf]EXPORT INTERFACES

CubCenter

Legend:

BlackBox

Arrows

CubCenter Module

 Exported Interface

BlueBoard

InstaPost

QuickLink

AutoPost

AutoAddForum

HotPost

Calendar

Context

Grades / Homework

JAVA Chat Room

2.2 Exported Interfaces

	2.2.1 InstaPost

	The InstaPost interface will give other components a way to allow users to post to BlueBoard from any component. Other components will simply be able to include a chunk of code that will display a "post to message board" option to users. With basic class, forum, and user information, BlueBoard will interpret the message and post it to the appropriate forum.

	Classes, Types, Objects, Forms or Entities Made Available:

	The InstaPost export makes no additional information available to the user. It is exclusively a functional interface intended to allow other modules to conveniently add posts to CubBoard’s database.

	Other methods supplied:
	InstaPost provides a method for adding a post to the BlueBoard system. This creates a new Post data structure, specific to a certain class and forum, and inserts it into the database’s post table for that class and forum.

	References, Links, Etc. Implemented:
	In order to gather the information necessary to create the post, the user must arrive at a form with all the appropriate fields. Depending on what the implementers of the interface prefer, this can be <cfinclude>-ed into a page, or brought up as a separate page in a new navigator window. Both methods will be supported, one in the form of a fusebox code block, the other in the form of a complete HTML page.

	Pseudo-code:
	Get date, class, user name, forum, etc…

If (user not authorized) {

Error(“You are not authorized to post to this forum”)

Abort

}

If(message text not empty) {

Insert values into table

(Date, class, user name, forum, name, etc…)

}
The parameters that need to be passed to our method, an abbreviated list of which appears above, are all the fields present in the data scheme for a “post.” See data schema.

	2.2.2 HotPost

	The HotPost interface allows other components to easily access "Hot Posts" to BlueBoard and display them to users (or at least note the hot discussion going on) without users' having to leave their current component.

	Classes, Types, Objects, Forms or Entities Made Available:

	Hot posts are simply posts of high priority. By making HotPosts available to other modules, we are essentially making the “post” data structure available. See data scheme for “post.”

	Other methods supplied:
	The mechanism by which we supply this information is through a display block that we will write and make available to other teams. Methods in the code will query our database in order to retrieve and display the HotPosts. (See Pseudo-code)

	References, Links, Etc. Implemented:
	The code block that supplies this functionality will be embedded in the implementing module’s pages, and needs not redirect the user anywhere else.

	Pseudo-code:
	Get class

Select class’s HotPosts from database

Foreach(HotPost) {

Output the HotPost with all appropriate formatting

}
Because the HotPosts are specific to a particular class, the caller has to specify to our code block through a ColdFusion variable, which class the HotPosts are to be retrieved from.

	2.2.3 QuickLink

	QuickLink is a ‘smart URL’ of sorts that will know where to take the user in BlueBoard based on the current module being provided. For example, if the user is in the Home Work module and looking at an assignment for CS3156, then the QuickLink will know to send the user to the BlueBoard CS3156 forum.

	Classes, Types, Objects, Forms or Entities Made Available:

	QuickLink is simply an advanced URL that allows users to post quickly. By making QuickLink available to other modules, we are essentially making the “post” data structure available. See data scheme for “post.”

	Other methods supplied:
	The mechanism by which we supply this information is through a link that will pass a category and forum parameter to BlueBoard, letting it know where the post should be directed.

	References, Links, Etc. Implemented:
	The code block that supplies this functionality will be embedded in the implementing module’s pages, which will allow the parameters to be passed, directing the user to a page where he or she can post to the appropriate forum.

	Pseudo-code:
	<CFLINK>Post-Enabled Web page && Category = categoryName && Forum = forumName </CFLINK>

	2.2.4 Autopost

	Autopost will give other components the ability to generate posts to the bulletin board automatically in case of an urgent event. For instance, if the due date of a particular assignment is changed in the homework/grade component, the TA or Professor will have the option to send an update to the appropriate class and forum on BlueBoard.

	Classes, Types, Objects, Forms or Entities Made Available:

	The AutoPost interface will allow other components to access the Create Message module to automatically update the bulletin board.

	Other methods supplied:
	The AutoPost interface will take info relevant to message creation as parameters from other components. When an update is made in another component, the contextual information regarding user, class, forum, etc., along with an appropriate title for the new message will create a message in the appropriate class and forum regarding the update. This interface will use much of the functionality from the InstaPost interface, but will automate the actual message creation.

	References, Links, Etc. Implemented:
	Since the interface implements an automatic procedure, all components will be able to implement the interface. They will be able to automatically generate messages, but no redirection will be used.

	Pseudo-code:
	Get date, class, user name, forum, etc…

/**

this information will be available in the specific
component, and will have to be passed to the interface

**/

Message newMessage = new Message(title, text);

/**

title will be generated directly from the element of
the component being updated

**/

Insert values into messages table {

(Date, class, user name, forum, name, etc?)

}

/**

since the component will have error-checking built-in,
our interface doesn't need extensive error checking.
For example, to update information in the grade
component the user will have had to log in as an
administrator, so no authority-level checking is
necessary

**/

	2.2.5 AutoAddForum

	autoAddForum will automatically update forums for the class boards on BlueBoard when other components mandate new forums. For example, if a new homework is assigned and created in the homework/grade component, a new forum will be automatically created in the appropriate BlueBoard class.

	Classes, Types, Objects, Forms or Entities Made Available:

	The AutoAddForum interface will allow other components to access the Create Forum module to automatically update the bulletin board, much like the AutoPost interface.

	Other methods supplied:
	The AutoAddForum interface will take info relevant to forum creation as parameters from other components. When an update is made in another component, the contextual information regarding class and forum will be used to create a new forum in the appropriate class with the appropriate title. This interface will use much of the functionality from the AutoPost interface, but will create a forum instead of a message.

	References, Links, Etc. Implemented:
	Since the interface implements an automatic procedure, all components will be able to implement the interface. They will be able to automatically generate forums, but no redirection will be used.

	Pseudo-code:
	Get class, forum?

/**

this information will be available in the specific
component, and will have to be passed to the interface

**/

Forum newForum = new Forum(title);

/**

title will be generated directly from the element of
the component being updated

**/

Insert values into forums table {

(class, forum)

}

/**

since the component will have error-checking built-in,
our interface doesn't need extensive error checking.
For example, to update information in the grade
component the user will have had to log in as an
administrator, so no authority-level checking is
necessary

**/

	3. Import API and Schemas

	3.0.1 Changes from the ICD

	In this document, import API refer to CF scripts and/or code, written by other groups and thus referring to other components of the CubCenter, which will be appended into the code of the BlueBoard system in order for the latter to operate properly. These are, in fact, scripts and methods will enable BlueBoard to effortlessly access other component’s private information without knowing exactly how that information is stored. This definition of import is somewhat different from the approach taken in the Integration Concept Description document, in which the essence of the import was based on the direction and flow of information.
3.0.1.1 Conversion of ICD Import Interface 4.3.3 to Export Interface

The Post to Board Interface (ICD 4.3.3) is now treated as an export, namely because in order for BlueBoard to import the information (i.e. a post), the system must supply a proper script to the component, from which the information originates, hence in fact exporting the script.

3.0.1.2 Conversion of ICD Import Interface 4.3.2 to Export Interface

The List of Categories Interface (ICD 4.3.2) is now treated as export, for similar reasons: the BlueBoard will supply a script for the other components of CubCenter, enabling them to add categories (a.k.a. “forums”) to the board.

3.0.1.3 Addition of an Import Interface: Audit Log Insertion Interface

After reviewing the Context Module’s ICD, the capability to log unusual events (such as a deletion of a post, and an addition of a class) onto the context Module has been embraced. The BlueBoard will thus import the Audit log insertion interface (MotherShip ICD E.I.104).

3.0.1.4 Addition if an Import Interface: Log-in Information

Since it has been decided that CubCenter would have a unified login interface, maintained by the Context Module, an additional login interface will be imported.

3.1 System Context Diagram - Imported Interfaces

[image: image2.wmf]IMPORTED INTERFACES

CubCenter

Legend:

BlackBox

Arrows

CubCenter Module

 Exported Interface

BlueBoard

Authentication

Event

ClassList

Calendar

Context

Grades / Homework

JAVA Chat Room

No Interface Available

ShadedBox

3.2 Imported Interfaces
	3.2.1 Log-in Information Interface - (Authentication)

	For each logged user, the BlueBoard requires the following pieces of information: full name, lists of classes, and position in each class (student, TA or instructor).

	Provided by:
	Context Module (E.I.101 , “Login Interface”)

	Information supplied:
	This interface will return the user ID of the currently logged on user.
In case the user has not logged in through the context module, or if his/her session expired, the interface will prompt for a new login.

	Other methods supplied:
	logout()

This method will initiate a log out of the user.

	Shared references / schemas:
	The BlueBoard only uses the Context Module to assign security privileges. It only reads information from its database using the supplied interface, and does not alter any information in it.

	Pseudo-code:
	The context will supplies modules/custom tags such as:

<CFMODULE TEMPLATE="/teams/braintrust/sosman/ GetLoginInformation.cfm">

	3.2.2 User Information Interface (ICD 4.2.1) – (Class List)

	For each logged user, the BlueBoard requires the following pieces of information: full name, lists of classes, and position in each class (student, TA or instructor).

	Provided by:
	Context Module (E.I.102 , “Context data query interface”)

	Information supplied:
	While the BlueBoard only supplies the user ID, as received in by a cookie, it expects the following parameters:

1. Full Name

2. Ordered pairs: (class taken, position in the class).

	Other methods supplied:
	Since BlueBoard only uses that above data to assign security privileges, it needs no additional methods from the Context Module to manipulate the above data.

	Shared references / schemas:
	The BlueBoard only uses the Context Module to assign security privileges. It only reads information from its database using the supplied interface, and does not alter any information in it.

	Pseudo-code:
	The context will supplies modules/custom tags such as:

<CFMODULE TEMPLATE="/teams/braintrust/sosman/ DataQuary.cfm"

UserID=#UserID#>

	3.2.3 Audit Log Insertion Interface – (Event)

	After any infrequent even, as defined by the system administrator, BlueBoard will add the event to the audit log, which will be kept and handled by the Context Module.

	Provided by:
	Context Module (E.I.104, “Audit log insertion interface”)

	Information supplied:
	Blue Board will add an event to the log as a string describing the event. No parameters will be returned from the context Modules.

	Other methods supplied:
	The context Module supplies “audit log query interface,” which will be used by the admin Module of BlueBoard to create reports.

	Shared Schemas:
	n/a

	Pseudo-code:
	
<CFMODULE TEMPLATE="/teams/braintrust/sosman/ auditInsert.cfm"

Event=#EventString#>

	3.2.4 Online Status in Chat Room – (nonessential complementary function)

	This interface could be supplied either by the Chat Room Module, or by the Context Module. Since neither one of the groups has listed this interface in its ICD, it is uncertain weather this interface will be available at all, and which module shall offer it.

	Provided by:
	Chat Room Module and/or Context Module

	Information supplied:
	BlueBoard will pass the CUNIX user ID as a parameter, and expect a Boolean return parameter, indicating the user’s online status in the chat room.

	Other methods supplied:
	n/a

	Shared Schemas:
	n/a

	Pseudo-code:
	Assuming it is offered by the context module:

<CFMODULE TEMPLATE="/teams/braintrust/sosman/ GetLoginInformation.cfm"

Event=#EventString#>

<CFIF inChat is ‘true>

…

<CFELSE>

…

</CFIF>

	4. Glossary

	Bulletin Board

	
	An entity that facilitates posting of messages

	CubCenter

	
	Central system that BlueBoard will be a component of

	Forum

	
	An electronic entity for creating on-line discussions

	Fusebox

	
	Methodology for creating modular software components in a web application framework

	Hot Posts

	
	Messages of urgent nature

	ID

	
	User Identification

	Module

	
	A software component intended for a larger system

	Navigation

	
	The ability to go to various locations on a system

	Post

	
	The process of creating a message on a BBS

	TA

	
	Teaching assistant

	Thread

	
	A progression of an on-line discussion

	URL

	
	Unique Resource Locator

_1046859345.vsd
InstaPost�

EXPORT INTERFACES�

QuickLink�

AutoPost�

AutoAddForum�

HotPost�

BlueBoard�

Calendar�

Context�

Grades / Homework�

JAVA Chat Room�

CubCenter�

Legend:�

BlackBox�

Arrows�

CubCenter Module�

 Exported Interface�

_1046860169.vsd
IMPORTED INTERFACES�

CubCenter�

Legend:�

BlackBox�

Arrows�

CubCenter Module�

 Exported Interface�

BlueBoard�

Authentication�

Event�

ClassList�

Calendar�

Context�

Grades / Homework�

JAVA Chat Room�

No Interface Available�

ShadedBox�

